Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15547-15558, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38756091

RESUMO

Polycyclic aromatic nitrogen heterocycles (PANHs) are present in various astronomical environments where they are subjected to intense radiation. Their photodissociation pathways give crucial insights into the cycle of matter in the universe, yet so far only the dissociation characteristics of few PANHs have been investigated. Moreover, most experiments use single photon techniques that only reveal the initial dissociation step, and are thus unsuited to replicate astronomical environments and timescales. In this work, we use the Instrument for the Photodynamics of PAHs (i-PoP) at the Laboratory for Astrophysics to simulate the interstellar photodissociation of a model PANH, cationic triazacoronene (TAC˙+, C21H9N3). Comparing the observed fragments to similar PAHs such as the isoelectronic coronene can give mechanistic insight into PAH dissociation. For coronene the major photodissociation products were found to be C9H+, C10+, and C11+. In contrast, fragmentation in TAC˙+ is initiated by up to three HCN losses often in combination with H- or H2 losses. In the lower mass region, the fragments show similarities to comparable PAHs like coronene, but for TAC˙+ the inclusion of nitrogen atoms into the ionic fragments in the form of e.g. (di)cyanopolyynes is also observed. These nitrogen-containing species may be important tracers of regions in interstellar space where interstellar PANHs are being photodissociated.

2.
Nat Commun ; 15(1): 2139, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459016

RESUMO

The pressing demand for sustainable energy storage solutions has spurred the burgeoning development of aqueous zinc batteries. However, kinetics-sluggish Zn2+ as the dominant charge carriers in cathodes leads to suboptimal charge-storage capacity and durability of aqueous zinc batteries. Here, we discover that an ultrathin two-dimensional polyimine membrane, featured by dual ion-transport nanochannels and rich proton-conduction groups, facilitates rapid and selective proton passing. Subsequently, a distinctive electrochemistry transition shifting from sluggish Zn2+-dominated to fast-kinetics H+-dominated Faradic reactions is achieved for high-mass-loading cathodes by using the polyimine membrane as an interfacial coating. Notably, the NaV3O8·1.5H2O cathode (10 mg cm-2) with this interfacial coating exhibits an ultrahigh areal capacity of 4.5 mAh cm-2 and a state-of-the-art energy density of 33.8 Wh m-2, along with apparently enhanced cycling stability. Additionally, we showcase the applicability of the interfacial proton-selective coating to different cathodes and aqueous electrolytes, validating its universality for developing reliable aqueous batteries.

3.
J Phys Chem C Nanomater Interfaces ; 128(8): 3514-3524, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38445014

RESUMO

A fundamental understanding of proton transport through graphene nanopores, defects, and vacancies is essential for advancing two-dimensional proton exchange membranes (PEMs). This study employs ReaxFF molecular dynamics, metadynamics, and density functional theory to investigate the enhanced proton transport through a graphene nanopore. Covalently functionalizing the nanopore with a benzenesulfonic group yields consistent improvements in proton permeability, with a lower activation barrier (≈0.15 eV) and increased proton selectivity over sodium cations. The benzenesulfonic functionality acts as a dynamic proton shuttle, establishing a favorable hydrogen-bonding network and an efficient proton transport channel. The model reveals an optimal balance between proton permeability and selectivity, which is essential for effective proton exchange membranes. Notably, the benzenesulfonic-functionalized graphene nanopore system achieves a theoretically estimated proton diffusion coefficient comparable to or higher than the current state-of-the-art PEM, Nafion. Ergo, the benzenesulfonic functionalization of graphene nanopores, firmly holds promise for future graphene-based membrane development in energy conversion devices.

4.
Biomacromolecules ; 25(2): 1027-1037, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38166400

RESUMO

Subunit vaccines would benefit from a safe particle-based adjuvant. Elastin-like polypeptide (ELP)-based micelles are interesting candidate adjuvants due to their well-defined size and easy modification with protein-based cargo. Coiled coils can facilitate noncovalent modifications, while potentially enhancing antigen delivery through interaction with cell membranes. ELP micelles comprise ELP diblock copolymers that self-assemble above a critical micelle temperature. In this study, an amphiphilic ELP was conjugated to peptide "K", which forms a heterodimeric coiled-coil complex with peptide "E". Self-assembled "covalent" micelles containing ELP-OVA323 (i.e., model antigen OVA323 conjugated to ELP), "coiled-coil" micelles containing ELP-K/E-OVA323 and "hybrid" micelles containing ELP-K and ELP-OVA323 were shown to be monodisperse and spherical. Dendritic cells (DCs) were exposed to all micelle compositions, and T-cell proliferation was investigated. The presence of ELP-K enhanced micelle uptake and subsequent DC maturation, resulting in enhanced CD4+ T-cell proliferation, which makes ELPs with coiled coil-associated antigens a promising vaccine platform.


Assuntos
Polipeptídeos Semelhantes à Elastina , Micelas , Elastina/química , Peptídeos/química , Antígenos , Ativação Linfocitária
5.
JACS Au ; 3(2): 526-535, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873699

RESUMO

The Angstrom-scale space between graphene and its substrate provides an attractive playground for scientific exploration and can lead to breakthrough applications. Here, we report the energetics and kinetics of hydrogen electrosorption on a graphene-covered Pt(111) electrode using electrochemical experiments, in situ spectroscopy, and density functional theory calculations. The graphene overlayer influences the hydrogen adsorption on Pt(111) by shielding the ions from the interface and weakening the Pt-H bond energy. Analysis of the proton permeation resistance with controlled graphene defect density proves that the domain boundary defects and point defects are the pathways for proton permeation in the graphene layer, in agreement with density functional theory (DFT) calculations of the lowest energy proton permeation pathways. Although graphene blocks the interaction of anions with the Pt(111) surfaces, anions do adsorb near the defects: the rate constant for hydrogen permeation is sensitively dependent on anion identity and concentration.

6.
Photochem Photobiol ; 99(2): 777-786, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36315051

RESUMO

Photosubstitutionally active ruthenium complexes show high potential as prodrugs for the photoactivated chemotherapy (PACT) treatment of tumors. One of the problems in PACT is that the localization of the ruthenium compound is hard to trace. Here, a ruthenium PACT prodrug, [Ru(3)(biq)(STF-31)](PF6 )2 (where 3 = 3-(([2,2':6',2″-ter- pyridin]-4'-yloxy)propyl-4-(pyren-1-yl)butanoate) and biq = 2,2'-biquinoline), has been prepared, in which a pyrene tracker is attached via an ester bond. The proximity between the fluorophore and the ruthenium center leads to fluorescence quenching. Upon intracellular hydrolysis of the ester linkage, however, the fluorescence of the pyrene moiety is recovered, thus demonstrating prodrug cellular uptake. Further light irradiation of this molecule liberates by photosubstitution STF-31, a known cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, as well as singlet oxygen via excitation of the free pyrene chromophore. The dark and light cytotoxicity of the prodrug, embedded in liposomes, as well as the appearance of blue emission upon uptake, were evaluated in A375 human skin melanoma cells. The cytotoxicity of the liposome-embedded prodrug was indeed increased by light irradiation. This work realizes an in vitro proof-of-concept of the lock-and-kill principle, which may ultimately be used to design strategies aimed at knowing where and when light irradiation should be realized in vivo.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Pró-Fármacos , Rutênio , Humanos , Complexos de Coordenação/química , Rutênio/química , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Nat Commun ; 13(1): 1920, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395820

RESUMO

Molecularly thin, nanoporous thin films are of paramount importance in material sciences. Their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve using current production methods. Here, the small polycyclic aromatic hydrocarbon decacyclene is used to form molecular thin films, without requiring covalent crosslinking of any kind. The 2.5 nm thin films are mechanically stable, able to be free-standing over micrometer distances, held together solely by supramolecular interactions. Using a combination of computational chemistry and microscopic imaging techniques, thin films are studied on both a molecular and microscopic scale. Their mechanical strength is quantified using AFM nanoindentation, showing their capability of withstanding a point load of 26 ± 9 nN, when freely spanning over a 1 µm aperture, with a corresponding Young's modulus of 6 ± 4 GPa. Our thin films constitute free-standing, non-covalent thin films based on a small PAH.

8.
ACS Mater Au ; 2(2): 79-84, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35295622

RESUMO

In chemical vapor deposition of graphene, crossing over the melting temperature of the bulk catalyst is an effective approach to heal the defects and thus improve the crystallinity of the lattice. Here, electromagnetic absorption (the capability of metals to absorb radiated thermal energy) yields a thin skin of liquid metal catalyst at submelting temperatures, allowing the growth of high quality graphene. In fact, a chromium film initially deposited on one side of a copper foil absorbs the thermal energy radiated from a heating stage several times more effectively than a plain copper foil. The resulting migration of the chromium grains to the other side of the foil locally melts the copper, improving the crystalline quality of the growing graphene, confirmed by Raman spectroscopy. The process duration is therefore dramatically minimized, and the crystallinity of the graphene is maximized. Remarkably, the usual annealing step is no more necessary prior to the growth which together with unlocking the direct healing of defects in the growing graphene, will unify growth strategies between a range of catalysts.

9.
Adv Mater ; 34(7): e2106666, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34994022

RESUMO

Owing to their excellent electrical properties and chemical stability, graphene field-effect transistors (Gr-FET) are extensively studied for biosensing applications. However, hinging on surface interactions of charged biomolecules, the sensitivity of Gr-FET is hampered by ionic screening under physiological conditions with high salt concentrations up to frequencies as high as MHz. Here, an electrolyte-gated Gr-FET in reflectometry mode at ultrahigh frequencies (UHF, around 2 GHz), where the ionic screening is fully cancelled and the dielectric sensitivity of the device allows the Gr-FET to directly function in high-salt solutions, is configured. Strikingly, by simultaneous characterization using electrolyte gating and UHF reflectometry, the developed graphene biosensors offer unprecedented capability for real-time monitoring of dielectric-specified biomolecular/cell interactions/activities, with superior limit of detection compared to that of previously reported nanoscale high-frequency sensors. These achievements highlight the unique potential of ultrahigh-frequency operation for unblocking the true potential of graphene biosensors for point-of-care diagnostic.


Assuntos
Técnicas Biossensoriais , Grafite , Eletrólitos , Grafite/química , Íons , Transistores Eletrônicos
10.
ACS Catal ; 12(1): 173-182, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35028190

RESUMO

The presence of defects and chemical dopants in metal-free carbon materials plays an important role in the electrocatalysis of the oxygen reduction reaction (ORR). The precise control and design of defects and dopants in carbon electrodes will allow the fundamental understanding of activity-structure correlations for tailoring catalytic performance of carbon-based, most particularly graphene-based, electrode materials. Herein, we adopted monolayer graphene - a model carbon-based electrode - for systematical introduction of nitrogen and oxygen dopants, together with vacancy defects, and studied their roles in catalyzing ORR. Compared to pristine graphene, nitrogen doping exhibited a limited effect on ORR activity. In contrast, nitrogen doping in graphene predoped with vacancy defects or oxygen enhanced the activities at 0.4 V vs the reversible hydrogen electrode (RHE) by 1.2 and 2.0 times, respectively. The optimal activity was achieved for nitrogen doping in graphene functionalized with oxygenated defects, 12.8 times more than nitrogen-doped and 7.7 times more than pristine graphene. More importantly, oxygenated defects are highly related to the 4e- pathway instead of nitrogen dopants. This work indicates a non-negligible contribution of oxygen and especially oxygenated vacancy defects for the catalytic activity of nitrogen-doped graphene.

11.
Langmuir ; 37(14): 4049-4055, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33651625

RESUMO

Interactions between water and graphene can be probed on a macroscopic level through wettability by measuring the water contact angle and on a microscopic level through water desorption kinetic studies using surface science methods. The contact angle studies of graphene pinpointed the critical role of sample preparation and measurement conditions in assessing the wettability of graphene. So far, studies of water desorption from graphene under the conditions of ultrahigh vacuum provided superior control over the environment but disregarded the importance of sample preparation. Here, we systematically examined the effect of the morphology of the growth substrate and of the transfer process on the macroscopic and microscopic wettability of graphene. Remarkably, the macroscopic wetting transparency of graphene does not always translate into microscopic wetting transparency, particularly in the case of an atomically defined Cu(111) substrate. Additionally, subtle differences in the type of substrates significantly alter the interactions between graphene and the first monolayer of adsorbed water but have a negligible effect on the apparent macroscopic wettability. This work looks into the correlations between the wetting properties of graphene, both on the macroscopic and microscopic scales, and highlights the importance of sample preparation in understanding the surface chemistry of graphene.

12.
ACS Appl Nano Mater ; 3(11): 10586-10590, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33283172

RESUMO

Molecular transistors, electromagnetic waveguides, plasmonic devices, and novel generations of nanofluidic channels comprise precisely separated gaps of nanometric and subnanometric spacing. Nonetheless, fabricating a nanogap/nanochannel is a technological challenge, currently tackled by several approaches such as breakdown electromigration and lithography. The aforementioned techniques, though, are limited, respectively, in terms of gap stability and ultimate resolution. Here, nanogaps/nanochannels are templated via the microtomy of metallic thin films embedded in a polymer matrix and precisely separated by a nanometric, sacrificial layer of polyelectrolytes grown via the layer-by-layer (LbL) approach. The versatility of the LbL technique, both in terms of the number of layers and composition of polyelectrolytes, allows to finely tune the spacing across the gap; the LbL template can further be removed by plasma etching. Our findings pave the path toward the realization of molecularly defined functional spacings at the nanometer-scale for the modular implementation of devices integrating nanogap/nanochannel components.

13.
Langmuir ; 36(48): 14478-14482, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33232163

RESUMO

Theoretical simulations have predicted that a lipid bilayer forms a stable superstructure when a sheet of graphene is inserted in its hydrophobic core. We experimentally produced for the first time a lipid-graphene-lipid assembly by combining the Langmuir-Blodgett and the Langmuir-Schaefer methods. Graphene is sandwiched and remains flat within the hydrophobic core of the lipid bilayer. Using infrared spectroscopy, ellipsometry, and neutron reflectometry, we characterized the superstructure at every fabrication step. The hybrid superstructure is mechanically stable and graphene does not disturb the natural lipid bilayer structure.

14.
ACS Sens ; 5(8): 2317-2325, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32573208

RESUMO

A wide range of approaches have been explored to meet the challenges of graphene nanostructure fabrication, all requiring complex and high-end nanofabrication platform and suffering from surface contaminations, potentially giving electrical noise and increasing the thickness of the atomically thin graphene membrane. Here, with the use of an electrical pulse on a low-capacitance graphene-on-glass (GOG) membrane, we fabricated clean graphene nanopores on commercially available glass substrates with exceptionally low electrical noise. In situ liquid AFM studies and electrochemical measurements revealed that both graphene nanopore nucleation and growth stem from the electrochemical attack on carbon atoms at defect sites, ensuring the creation of a graphene nanopore. Strikingly, compared to conventional TEM drilled graphene nanopores on SiN supporting membranes, GOG nanopores featured an order-of-magnitude reduced broadband noise, which we ascribed to the electrochemical refreshing of graphene nanopore on mechanically stable glass chips with negligible parasitic capacitance (∼1 pF). Further experiments on double-stranded DNA translocations demonstrated a greatly reduced current noise, and also confirmed the activation of single nanopores. Therefore, the exceptionally low noise and ease of fabrication will facilitate the understanding of the fundamental property and the application of such atomically thin nanopore sensors.


Assuntos
Grafite , Nanoporos , DNA , Vidro , Nanotecnologia
15.
Nat Nanotechnol ; 15(4): 307-312, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32152558

RESUMO

Nanoporous graphene and related atomically thin layered materials are promising candidates in reverse electrodialysis research owing to their remarkable ionic conductivity and high permselectivity. The synthesis of atomically thin nanoporous membranes with a narrow pore size distribution, however, remains challenging. Here, we report the fabrication of nanoporous carbon membranes via the thermal crosslinking of core-rim structured monomers, that is, polycyclic aromatic hydrocarbons. The mechanically robust, centimetre-sized membrane has a pore size of 3.6 ± 1.8 nm and a thickness of 2.0 ± 0.5 nm. When applied to reverse electrodialysis, the nanoporous carbon membrane offers a high short-circuit current with an output power density of 67 W m-2, which is about two orders of magnitude beyond that of the classic ion-exchange membranes and current prototype nanoporous membranes reported in the literature. Crosslinked and atomically thin porous polycyclic aromatic hydrocarbon membranes therefore represent new scaffolds that will revolutionize the rapidly developing fields of sustainable energy and membrane technology.

16.
Nat Commun ; 11(1): 898, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060270

RESUMO

Solid substrates often induce non-uniform strain and doping in graphene monolayer, therefore altering the intrinsic properties of graphene, reducing its charge carrier mobilities and, consequently, the overall electrical performance. Here, we exploit confocal Raman spectroscopy to study graphene directly free-floating on the surface of water, and show that liquid supports relief the preexisting strain, have negligible doping effect and restore the uniformity of the properties throughout the graphene sheet. Such an effect originates from the structural adaptability and flexibility, lesser contamination and weaker intermolecular bonding of liquids compared to solid supports, independently of the chemical nature of the liquid. Moreover, we demonstrate that water provides a platform to study and distinguish chemical defects from substrate-induced defects, in the particular case of hydrogenated graphene. Liquid supports, thus, are advantageous over solid supports for a range of applications, particularly for monitoring changes in the graphene structure upon chemical modification.

17.
Adv Mater ; 32(10): e1903575, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32011060

RESUMO

Direct electrical probing of molecular materials is often impaired by their insulating nature. Here, graphene is interfaced with single crystals of a molecular spin crossover complex, [Fe(bapbpy)(NCS)2 ], to electrically detect phase transitions in the molecular crystal through the variation of graphene resistance. Contactless sensing is achieved by separating the crystal from graphene with an insulating polymer spacer. Next to mechanical effects, which influence the conductivity of the graphene sheet but can be minimized by using a thicker spacer, a Dirac point shift in graphene is observed experimentally upon spin crossover. As confirmed by computational modeling, this Dirac point shift is due to the phase-dependent electrostatic potential generated by the crystal inside the graphene sheet. This effect, named as chemo-electric gating, suggests that molecular materials may serve as substrates for designing graphene-based electronic devices. Chemo-electric gating, thus, opens up new possibilities to electrically probe chemical and physical processes in molecular materials in a contactless fashion, from a large distance, which can enhance their use in technological applications, for example, as sensors.

18.
Small ; 16(15): e1902820, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31592577

RESUMO

This review provides a critical overview of current developments on nanoelectronic biochemical sensors based on graphene. Composed of a single layer of conjugated carbon atoms, graphene has outstanding high carrier mobility and low intrinsic electrical noise, but a chemically inert surface. Surface functionalization is therefore crucial to unravel graphene sensitivity and selectivity for the detection of targeted analytes. To achieve optimal performance of graphene transistors for biochemical sensing, the tuning of the graphene surface properties via surface functionalization and passivation is highlighted, as well as the tuning of its electrical operation by utilizing multifrequency ambipolar configuration and a high frequency measurement scheme to overcome the Debye screening to achieve low noise and highly sensitive detection. Potential applications and prospectives of ultrasensitive graphene electronic biochemical sensors ranging from environmental monitoring and food safety, healthcare and medical diagnosis, to life science research, are presented as well.


Assuntos
Técnicas Biossensoriais , Eletrônica , Grafite , Carbono
19.
Nanoscale ; 11(43): 20785-20791, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31656965

RESUMO

Two-dimensional (2D) membranes featuring arrays of sub-nanometer pores have applications in purification, solvent separation and water desalination. Compared to channels in bulk membranes, 2D nanopores have lower resistance to transmembrane transport, leading to faster passage of ions. However, the formation of nanopores in 2D membranes requires expensive post-treatment using plasma or ion bombardment. Here, we study bottom-up synthesized porous carbon nanomembranes (CNMs) of biphenyl thiol (BPT) precursors. Sub-nanometer pores arise intrinsically during the BPT-CNM synthesis with a density of 2 ± 1 pore per 100 nm2. We employ BPT-CNM based pore arrays as efficient ion sieving channels, and demonstrate selectivity of the membrane towards ion transport when exposed to a range of concentration gradients of KCl, CsCl and MgCl2. The selectivity of the membrane towards K+ over Cl- ions is found be 16.6 mV at a 10 : 1 concentration ratio, which amounts to ∼30% efficiency relative to the Nernst potential for complete ion rejection. The pore arrays in the BPT-CNM show similar transport and selectivity properties to graphene and carbon nanotubes, whilst the fabrication method via self-assembly offers a facile means to control the chemical and physical properties of the membrane, such as surface charge, chemical nature and pore density. CNMs synthesized from self-assembled monolayers open the way towards the rational design of 2D membranes for selective ion sieving.

20.
Nat Commun ; 9(1): 4185, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305628

RESUMO

Square millimeters of free-standing graphene do not exist per se because of thermal fluctuations in two-dimensional crystals and their tendency to collapse during the detachment from the substrate. Here we form millimeter-scale freely suspended graphene by injecting an air bubble underneath a graphene monolayer floating at the water-air interface, which allowed us to measure the contact angle on fully free-standing non-contaminated graphene. A captive bubble measurement shows that free-standing clean graphene is hydrophilic with a contact angle of 42° ± 3°. The proposed design provides a simple tool to probe and explore the wettability of two-dimensional materials in free-standing geometries and will expand our perception of two-dimensional materials technologies from microscopic to now millimeter scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA