Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Front Immunol ; 15: 1298598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318174

RESUMO

Variability or stability might have an impact on treatment success and toxicity of CD19 CAR T-cells. We conducted a prospective observational study of 12 patients treated with Tisagenlecleucel for CD19+ B-cell malignancies. Using a 31-color spectral flow cytometry panel, we analyzed differentiation stages and exhaustion markers of CAR T-cell subsets prior to CAR T-cell infusion and longitudinally during 6 months of follow-up. The majority of activation markers on CAR T-cells showed stable expression patterns over time and were not associated with response to therapy or toxicity. Unsupervised cluster analysis revealed an immune signature of CAR T-cell products associated with the development of immune cell-associated neurotoxicity syndrome. Warranting validation in an independent patient cohort, in-depth phenotyping of CAR T-cell products as well as longitudinal monitoring post cell transfer might become a valuable tool to increase efficacy and safety of CAR T-cell therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunofenotipagem , Humanos , Antígenos CD19 , Linfócitos T , Estudos Prospectivos
2.
Eur J Haematol ; 112(4): 641-649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164819

RESUMO

OBJECTIVES: Treatment intensification (including consolidative high-dose chemotherapy with autologous stem cell transplantation [HDT-ASCT]) significantly improved outcome in primary central nervous system lymphoma (PCNSL) patients. METHODS: We conducted a multicenter, retrospective analysis of newly diagnosed PCNSL patients, treated with intensified treatment regimens. The following scores were evaluated in terms of overall survival (OS) and progression-free survival (PFS): Memorial Sloan-Kettering Cancer Center (MSKCC), International Extranodal Lymphoma Study Group (IELSG), and three-factor (3F) prognostic score. Further, all scores were comparatively investigated for model quality and concordance. RESULTS: Altogether, 174 PCNSL patients were included. One hundred and five patients (60.3%) underwent HDT-ASCT. Two-year OS and 2-year PFS for the entire population were 73.3% and 48.5%, respectively. The MSKCC (p = .003) and 3F score (p < .001), but not the IELSG score (p = .06), had the discriminatory power to identify different risk groups for OS. In regard to concordance, the 3F score (C-index [0.71]) outperformed both the MSKCC (C-index [0.64]) and IELSG (C-index [0.53]) score. Moreover, the superiority of the 3F score was shown for PFS, successfully stratifying patients in three risk groups, which also resulted in the highest C-index (0.66). CONCLUSION: The comparative analysis of established PCNSL risk scores affirm the clinical utility of the 3F score stratifying the widest prognostic spectrum among PCNSL patients treated with intensified treatment approaches.


Assuntos
Neoplasias do Sistema Nervoso Central , Transplante de Células-Tronco Hematopoéticas , Linfoma , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Estudos Retrospectivos , Transplante Autólogo , Linfoma/terapia , Linfoma/tratamento farmacológico
3.
Blood ; 143(6): 522-534, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37946299

RESUMO

ABSTRACT: State-of-the-art response assessment of central nervous system lymphoma (CNSL) by magnetic resonance imaging is challenging and an insufficient predictor of treatment outcomes. Accordingly, the development of novel risk stratification strategies in CNSL is a high unmet medical need. We applied ultrasensitive circulating tumor DNA (ctDNA) sequencing to 146 plasma and cerebrospinal fluid (CSF) samples from 67 patients, aiming to develop an entirely noninvasive dynamic risk model considering clinical and molecular features of CNSL. Our ultrasensitive method allowed for the detection of CNSL-derived mutations in plasma ctDNA with high concordance to CSF and tumor tissue. Undetectable plasma ctDNA at baseline was associated with favorable outcomes. We tracked tumor-specific mutations in plasma-derived ctDNA over time and developed a novel CNSL biomarker based on this information: peripheral residual disease (PRD). Persistence of PRD after treatment was highly predictive of relapse. Integrating established baseline clinical risk factors with assessment of radiographic response and PRD during treatment resulted in the development and independent validation of a novel tool for risk stratification: molecular prognostic index for CNSL (MOP-C). MOP-C proved to be highly predictive of outcomes in patients with CNSL (failure-free survival hazard ratio per risk group of 6.60; 95% confidence interval, 3.12-13.97; P < .0001) and is publicly available at www.mop-c.com. Our results highlight the role of ctDNA sequencing in CNSL. MOP-C has the potential to improve the current standard of clinical risk stratification and radiographic response assessment in patients with CNSL, ultimately paving the way toward individualized treatment.


Assuntos
Neoplasias do Sistema Nervoso Central , DNA Tumoral Circulante , Linfoma não Hodgkin , Humanos , DNA Tumoral Circulante/genética , Recidiva Local de Neoplasia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Prognóstico , Biomarcadores Tumorais/genética , Sistema Nervoso Central
4.
Commun Biol ; 6(1): 519, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179425

RESUMO

Cancer-induced muscle wasting reduces quality of life, complicates or precludes cancer treatments, and predicts early mortality. Herein, we investigate the requirement of the muscle-specific E3 ubiquitin ligase, MuRF1, for muscle wasting induced by pancreatic cancer. Murine pancreatic cancer (KPC) cells, or saline, were injected into the pancreas of WT and MuRF1-/- mice, and tissues analyzed throughout tumor progression. KPC tumors induces progressive wasting of skeletal muscle and systemic metabolic reprogramming in WT mice, but not MuRF1-/- mice. KPC tumors from MuRF1-/- mice also grow slower, and show an accumulation of metabolites normally depleted by rapidly growing tumors. Mechanistically, MuRF1 is necessary for the KPC-induced increases in cytoskeletal and muscle contractile protein ubiquitination, and the depression of proteins that support protein synthesis. Together, these data demonstrate that MuRF1 is required for KPC-induced skeletal muscle wasting, whose deletion reprograms the systemic and tumor metabolome and delays tumor growth.


Assuntos
Neoplasias Pancreáticas , Qualidade de Vida , Animais , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Pancreáticas
5.
Gut ; 72(8): 1472-1485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36958817

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.


Assuntos
Arilamina N-Acetiltransferase , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/metabolismo , Metaboloma , Fezes , Arilamina N-Acetiltransferase/metabolismo
6.
Res Sq ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798266

RESUMO

Cancer-induced muscle wasting reduces quality of life, complicates or precludes cancer treatments, and predicts early mortality. Herein, we investigated the requirement of the muscle-specific E3 ubiquitin ligase, MuRF1, for muscle wasting induced by pancreatic cancer. Murine pancreatic cancer (KPC) cells, or saline, were injected into the pancreas of WT and MuRF1-/- mice, and tissues analyzed throughout tumor progression. KPC tumors induced progressive wasting of skeletal muscle and systemic metabolic reprogramming in WT mice, but not MuRF1-/- mice. KPC tumors from MuRF1-/- mice also grew slower, and showed an accumulation of metabolites normally depleted by rapidly growing tumors. Mechanistically, MuRF1 was necessary for the KPC-induced increases in cytoskeletal and muscle contractile protein ubiquitination, and the depression of proteins that support protein synthesis. Together, these data demonstrate that MuRF1 is required for KPC-induced skeletal muscle wasting, whose deletion reprograms the systemic and tumor metabolome and delays tumor growth.

7.
Front Immunol ; 13: 999163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275657

RESUMO

Identification of immune phenotypes linked to durable graft-versus-leukemia (GVL) response following donor lymphocyte infusions (DLI) is of high clinical relevance. In this prospective observational study of 13 AML relapse patients receiving therapeutic DLI, we longitudinally investigated changes in differentiation stages and exhaustion markers of T cell subsets using cluster analysis of 30-color spectral flow cytometry during 24 months follow-up. DLI cell products and patient samples after DLI were analyzed and correlated to the clinical outcome. Analysis of DLI cell products revealed heterogeneity in the proportions of naïve and antigen experienced T cells. Cell products containing lower levels of effector memory (eff/m) cells and higher amounts of naïve CD4+ and CD8+ T cells were associated with long-term remission. Furthermore, investigation of patient blood samples early after DLI showed that patients relapsing during the study period, had higher levels of CD4+ eff/m T cells and expressed a mosaic of surface molecules implying an exhausted functional state. Of note, this observation preceded the clinical diagnosis of relapse by five months. On the other hand, patients with continuous remission retained lower levels of exhausted CD4+ eff/m T cells more than four months post DLI. Moreover, lower frequencies of exhausted CD8+ eff/m T cells as well as higher amounts of CD4+temra CD45RO+ T cells were present in this group. These results imply the formation of functional long-term memory pool of T cells. Finally, unbiased sample analysis showed that DLI cell products with low levels of eff/m cells both in CD4+ and CD8+ T cell subpopulations associate with a lower relapse incidence. Additionally, competing risk analysis of patient samples taken early after DLI revealed that patients with high amounts of exhausted CD4+ eff/m T cells in their blood exhibited significantly higher rates of relapse. In conclusion, differentially activated T cell clusters, both in the DLI product and in patients post infusion, were associated with AML relapse after DLI. Our study suggests that differences in DLI cell product composition might influence GVL. In-depth monitoring of T cell dynamics post DLI might increase safety and efficacy of this immunotherapy, while further studies are needed to assess the functionality of T cells found in the DLI.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia Mieloide Aguda , Humanos , Transfusão de Linfócitos/métodos , Transplante Homólogo/efeitos adversos , Linfócitos T CD8-Positivos , Citometria de Fluxo , Subpopulações de Linfócitos T , Recidiva , Leucemia Mieloide Aguda/terapia , Análise por Conglomerados
8.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142824

RESUMO

Donor lymphocyte infusion (DLI) can (re-)induce durable remission in relapsing patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). However, DLI harbors the risk of increased non-relapse mortality due to the co-occurrence of graft-versus-host disease (GVHD). GVHD onset may be caused or accompanied by changes in the clonal T-cell receptor (TCR) repertoire. To investigate this, we analyzed T cells in a cohort of 21 patients receiving DLI after alloHSCT. We performed deep T-cell receptor ß (TRB) sequencing of sorted CD4+CD25+CD127low regulatory T cells (Treg cells) and CD4+ conventional T cells (Tcon cells) in order to track longitudinal changes in the TCR repertoire. GVHD following DLI was associated with less diverse but clonally expanded CD4+CD25+CD127low Treg and CD4+ Tcon TCR repertoires, while patients without GVHD exhibited healthy-like repertoire properties. Moreover, the diversification of the repertoires upon GVHD treatment was linked to steroid-sensitive GVHD, whereas decreased diversity was observed in steroid-refractory GVHD. Finally, the unbiased sample analysis revealed that the healthy-like attributes of the CD4+CD25+CD127low Treg TCR repertoire were associated with reduced GVHD incidence. In conclusion, CD4+CD25+CD127low Treg and CD4+ Tcon TRB repertoire dynamics may provide a helpful real-time tool to improve the diagnosis and monitoring of treatment in GVHD following DLI.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Transfusão de Linfócitos/efeitos adversos , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T Reguladores
10.
Cell Host Microbe ; 30(4): 583-598.e8, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35421353

RESUMO

Manipulation of the gut microbiota via fecal microbiota transplantation (FMT) has shown clinical promise in diseases such as recurrent Clostridioides difficile infection (rCDI). However, the variable nature of this approach makes it challenging to describe the relationship between fecal strain colonization, corresponding microbiota changes, and clinical efficacy. Live biotherapeutic products (LBPs) consisting of defined consortia of clonal bacterial isolates have been proposed as an alternative therapeutic class because of their promising preclinical results and safety profile. We describe VE303, an LBP comprising 8 commensal Clostridia strains under development for rCDI, and its early clinical development in healthy volunteers (HVs). In a phase 1a/b study in HVs, VE303 is determined to be safe and well-tolerated at all doses tested. VE303 strains optimally colonize HVs if dosed over multiple days after vancomycin pretreatment. VE303 promotes the establishment of a microbiota community known to provide colonization resistance.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal/métodos , Voluntários Saudáveis , Humanos
11.
Laryngorhinootologie ; 2021 Nov 19.
Artigo em Alemão | MEDLINE | ID: mdl-34798673

RESUMO

INTRODUCTION: Cochlear Implantation (CI) in patients with chronic otitis media or existing open mastoid cavity can be challenging. Subtotal petrosectomy (STP) is an option to improve the safety of this procedure. MATERIAL AND METHODS: Retrospective study with cases of STP prior CI. RESULTS: 25 patients could be enrolled in this investigation. Over all 26 STP were performed approximately 6 months before CI. The majority of the patients suffered from a chronic otitis media or had a preexisting open cavity; in one case a complex temporal bone fracture with destruction of the external auditory canal was the reason for this technique. After STP we observed three times a delayed wound healing at the closure of the external auditory meatus and a bleeding at the periumbilical region after harvesting fat of the abdominal wall. All patients could be provided with a CI. A recurrence of a cholesteatoma did not appear so far. CONCLUSION: With this method CI is feasible even in cases of concurrent chronic otitis media or canal wall down situation. We are in favour of a staged procedure, nevertheless a simultaneous STP and CI is justifiable in individual patients.

13.
JACS Au ; 1(6): 879-894, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34240082

RESUMO

Light-driven N2 cleavage into molecular nitrides is an attractive strategy for synthetic nitrogen fixation. However, suitable platforms are rare. Furthermore, the development of catalytic protocols via this elementary step suffers from poor understanding of N-N photosplitting within dinitrogen complexes, as well as of the thermochemical and kinetic framework for coupled follow-up chemistry. We here present a tungsten pincer platform, which undergoes fully reversible, thermal N2 splitting and reverse nitride coupling, allowing for experimental derivation of thermodynamic and kinetic parameters of the N-N cleavage step. Selective N-N splitting was also obtained photolytically. DFT computations allocate the productive excitations within the {WNNW} core. Transient absorption spectroscopy shows ultrafast repopulation of the electronic ground state. Comparison with ground-state kinetics and resonance Raman data support a pathway for N-N photosplitting via a nonstatistically vibrationally excited ground state that benefits from vibronically coupled structural distortion of the core. Nitride carbonylation and release are demonstrated within a full synthetic cycle for trimethylsilylcyanate formation directly from N2 and CO.

14.
EMBO Rep ; 22(6): e49568, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33969602

RESUMO

Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.


Assuntos
DNA Circular , Vírus da Hepatite B , Antivirais/farmacologia , Citidina Desaminase , DNA Circular/genética , DNA Viral/genética , DNA Viral/farmacologia , Exorribonucleases , Vírus da Hepatite B/genética , Humanos , Interferons , Proteínas , Replicação Viral
16.
ANZ J Surg ; 90(11): 2384, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33200516
17.
Phys Chem Chem Phys ; 22(27): 15723-15733, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32626855

RESUMO

Even though a gap exists in understanding the behavior of radical scavengers and interfering species, they have been extensively employed to elucidate degradation mechanisms or to improve the degradation efficiency in heterogeneous photocatalysis. Focusing on the influence of different species, such as scavengers (t-butanol, formic acid, methanol, p-benzoquinone, oxalate, superoxide dismutase, and azide), interfering species (sulfite, dichromate, bromate, carbonate, chloride, and iodide) and inorganic ions (nitrate, sulfate, and phosphate), this work investigated the production of hydroxyl radicals and singlet oxygen during TiO2/UVA reactions. Electron paramagnetic resonance spectroscopy (EPR) was applied to investigate radicals formed in the presence of each interfering/scavenger species. Some scavengers and interfering species were studied during phenol degradation, chosen as a model substrate. All species, except bromate, hindered the degradation. para-Benzoquinone showed an increased hydroxyl radical production, attributed to the photo-reduction of quinones. Radicals other than hydroxyl radicals, such as carbon dioxide, hydroxymethyl, azide, and semiquinone, were identified in the presence of oxalate, methanol, azide, and para-benzoquinone, respectively. Some of these radicals can possibly interact with organic substrates due to their reduction potential; as a result, a critical interpretation must be done when these species are added to a heterogeneous photocatalysis process.

18.
Int J Phytoremediation ; 20(14): 1380-1388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30652487

RESUMO

Forest species Angico-Vermelho (Parapiptadenia rigida (Bentham) Brenan) is an alternative for the revegetation of areas contaminated with high levels of heavy metals such as copper (Cu). However, excess Cu may cause toxicity to plants, which is why the use of soil amendments can facilitate cultivation by reducing the availability of Cu in the soil. The aim of this study was to assess how the use of amendment can contribute to growth and nutritional status as well as reduce oxidative stress in Angico-Vermelho grown in Cu-contaminated soil. Samples of a Typic Hapludalf soil containing high Cu content were used for the application of four amendments (limestone, organic compost, Ca silicate and zeolite), in addition to a control treatment. The treatments were arranged in a completely randomized design, with four replicates. The use of amendments decreased Cu content available in soil and contributed to improve both plant nutritional status and its antioxidant response expressed by enzymatic activity. The application of the amendments, especially zeolite and Ca silicate, increased dry matter yield of Angico-Vermelho. Thus, the results presented here suggest that the use of amendments contributes to improving Cu-contaminated soils and favors revegetation with Angico-Vermelho.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Cobre/análise , Estado Nutricional , Solo/química
19.
Microbiology (Reading) ; 163(8): 1117-1144, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28795660

RESUMO

Bacteria of the genus Xanthomonas are a major group of plant pathogens. They are hazardous to important crops and closely related to human pathogens. Being collectively a major focus of molecular phytopathology, an increasing number of diverse and intricate mechanisms are emerging by which they communicate, interfere with host signalling and keep competition at bay. Interestingly, they are also biotechnologically relevant polysaccharide producers. Systems biotechnology techniques have revealed their central metabolism and a growing number of remarkable features. Traditional analyses of Xanthomonas metabolism missed the Embden-Meyerhof-Parnas pathway (glycolysis) as being a route by which energy and molecular building blocks are derived from glucose. As a consequence of the emerging full picture of their metabolism process, xanthomonads were discovered to have three alternative catabolic pathways and they use an unusual and reversible phosphofructokinase as a key enzyme. In this review, we summarize the synthetic and systems biology methods and the bioinformatics tools applied to reconstruct their metabolic network and reveal the dynamic fluxes within their complex carbohydrate metabolism. This is based on insights from omics disciplines; in particular, genomics, transcriptomics, proteomics and metabolomics. Analysis of high-throughput omics data facilitates the reconstruction of organism-specific large- and genome-scale metabolic networks. Reconstructed metabolic networks are fundamental to the formulation of metabolic models that facilitate the simulation of actual metabolic activities under specific environmental conditions.


Assuntos
Polissacarídeos Bacterianos/metabolismo , Biologia Sintética/tendências , Biologia de Sistemas/tendências , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Genômica , Redes e Vias Metabólicas , Metabolômica , Doenças das Plantas/microbiologia
20.
J Biotechnol ; 257: 187-191, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28438580

RESUMO

The first complete genome sequence of Bacillus glycinifermentans B-27 was determined by SMRT sequencing generating a genome sequence with a total length of 4,607,442 bases. Based on this sequence 4738 protein-coding sequences were predicted and used to identify gene clusters that are related to the production of secondary metabolites such as Lichenysin, Bacillibactin and Bacitracin. This genomic potential combined with the ability of B. glycinifermentans B-27 to grown in bile containing media might contribute to a future application of this strain as probiotic in productive livestock potentially inhibiting competing and pathogenic organisms.


Assuntos
Bacillus/genética , Genoma Bacteriano/genética , Sequenciamento Completo do Genoma , Bacillus/classificação , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Proteínas de Bactérias/genética , Mapeamento Cromossômico , DNA Bacteriano , Genes Bacterianos/genética , Família Multigênica , Filogenia , Probióticos , RNA Bacteriano/genética , Metabolismo Secundário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA