Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7046, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949859

RESUMO

Large laser facilities have recently enabled material characterization at the pressures of Earth and Super-Earth cores. However, the temperature of the compressed materials has been largely unknown, or solely relied on models and simulations, due to lack of diagnostics under these challenging conditions. Here, we report on temperature, density, pressure, and local structure of copper determined from extended x-ray absorption fine structure and velocimetry up to 1 Terapascal. These results nearly double the highest pressure at which extended x-ray absorption fine structure has been reported in any material. In this work, the copper temperature is unexpectedly found to be much higher than predicted when adjacent to diamond layer(s), demonstrating the important influence of the sample environment on the thermal state of materials; this effect may introduce additional temperature uncertainties in some previous experiments using diamond and provides new guidance for future experimental design.

2.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955555

RESUMO

A methodology for measuring x-ray continuum spectra of inertial confinement fusion (ICF) implosions is described. The method relies on the use of ConSpec, a high-throughput spectrometer using a highly annealed pyrolytic graphite crystal [MacDonald et al., J. Instrum. 14, P12009 (2019)], which measures the spectra in the ≃20-30 keV range. Due to its conical shape, the crystal is sagittally focusing a Bragg-reflected x-ray spectrum into a line, which enhances the recorded x-ray emission signal above the high neutron-induced background accompanying ICF implosions at the National Ignition Facility. To improve the overall measurement accuracy, the sensitivity of the spectrometer measured in an off-line x-ray laboratory setting was revised. The error analysis was expanded to include the accuracy of the off-line measurements, the effect of the neutron-induced background, as well as the influence of possible errors in alignment of the instrument to the ICF target. We demonstrate how the improved methodology is applied in the analysis of ConSpec data with examples of a relatively low-neutron-yield implosion using a tritium-hydrogen-deuterium mix as a fuel and a high-yield deuterium-tritium (DT) implosion producing high level of the background. In both cases, the shape of the measured spectrum agrees with the exponentially decaying spectral shape of bremsstrahlung emission to within ±10%. In the case of the high-yield DT experiment, non-monotonic deviations slightly exceeding the measurement uncertainties are observed and discussed.

3.
Rev Sci Instrum ; 93(11): 113520, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461491

RESUMO

The Imaging Spectroscopy Snout (ISS) used at the National Ignition Facility is able to simultaneously collect neutron pinhole images, 1D spatially resolved x-ray spectra, and time resolved x-ray pinhole images. To measure the x-ray spectra, the ISS can be equipped with up to four different transmission crystals, each offering different energy ranges from ∼7.5 to ∼12 keV and different resolutions. Characterizing and calibrating such instruments is of paramount importance in order to extract meaningful results from experiments. More specifically, we characterized different ISS transmission-type alpha-Quartz crystals by measuring their responses as a function of photon energy, from which we inferred the angle-integrated reflectivity for each crystal's working reflections. These measurements were made at the Lawrence Livermore National Laboratory calibration station dedicated to the characterization of x-ray spectrometers. The sources used covered a wide x-ray range-from a few to 30 keV; the source diameter was ∼0.6 mm. The experimental results are discussed alongside theoretical calculations using the pyTTE model.

4.
Rev Sci Instrum ; 93(10): 103548, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319320

RESUMO

A new class of crystal shapes has been developed for x-ray spectroscopy of point-like or small (a few mm) emission sources. These optics allow for dramatic improvement in both achievable energy resolution and total throughput of the spectrometer as compared with traditional designs. This class of crystal shapes, collectively referred to as the Variable-Radii Spiral (VR-Spiral), utilize crystal shapes in which both the major and minor radii are variable. A crystal using this novel VR-Spiral shape has now been fabricated for high-resolution Extended X-ray Absorption Fine Structure (EXAFS) experiments targeting the Pb-L3 (13.0 keV) absorption edge at the National Ignition Facility. The performance of this crystal has been characterized in the laboratory using a microfocus x-ray source, showing that high-resolution high-throughput EXAFS spectra can be acquired using this geometry. Importantly, these successful tests show that the complex three-dimensional crystal shape is manufacturable with the required precision needed to realize the expected performance of better than 5 eV energy resolution while using a 30 mm high crystal. An improved generalized mathematical form for VR-Spiral shapes is also presented allowing improved optimization as compared to the first sinusoidal-spiral based design. This new formulation allows VR-Spiral spectrometers to be designed at any magnification with optimized energy resolution at all energies within the spectrometer bandwidth.

5.
Rev Sci Instrum ; 93(9): 093510, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182490

RESUMO

A Monte Carlo technique has been developed to simulate the expected signal and the statistical noise of x-ray spectrometers that use streak cameras to achieve the time resolution required for ultrafast diagnostics of laser-generated plasmas. The technique accounts for statistics from both the photons incident on the streak camera's photocathode and the electrons emitted by the photocathode travelling through the camera's electron optics to the sensor. We use the technique to optimize the design of a spectrometer, which deduces the temporal history of electron temperature of the hotspot in an inertial confinement fusion implosion from its hard x-ray continuum emission spectra. The technique is general enough to be applied to any instrument using an x-ray streak camera.

6.
Phys Rev Lett ; 128(18): 185002, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594117

RESUMO

Evolution of the hot spot plasma conditions was measured using high-resolution x-ray spectroscopy at the National Ignition Facility. The capsules were filled with DD gas with trace levels of Kr and had either a high-density-carbon (HDC) ablator or a tungsten (W)-doped HDC ablator. Time-resolved measurement of the Kr Heß spectra, absolutely calibrated by a simultaneous time-integrated measurement, allows inference of the electron density and temperature through observing Stark broadening and the relative intensities of dielectronic satellites. By matching the calculated hot spot emission using a collisional-radiative code to experimental observations, the hot spot size and areal density are determined. These advanced spectroscopy techniques further reveal the effect of W dopant in the ablator on the hot spot parameters for their improved implosion performance.

7.
Rev Sci Instrum ; 92(9): 093904, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598494

RESUMO

A novel high-resolution x-ray spectrometer for point-like emission sources has been developed using a crystal shape having both a variable major and a variable minor radius of curvature. This variable-radii sinusoidal spiral spectrometer (VR-Spiral) allows three common spectrometer design goals to be achieved simultaneously: 1. reduction of aberrations and improved spectral (energy) resolution, 2. reduction of source size broadening, and 3. use of large crystals to improve total throughput. The VR-Spiral concept and its application to practical spectrometer design are described in detail. This concept is then used to design a spectrometer for an extreme extended x-ray absorption fine structure experiment at the National Ignition Facility looking at the Pb L3 absorption edge at 13.0352 keV. The expected performance of this VR-Spiral spectrometer, both in terms of energy resolution and spatial resolution, is evaluated through the use of a newly developed raytracing tool, xicsrt. Finally, the expected performance of the VR-Spiral concept is compared to that of spectrometers based on conventional toroidal and variable-radii toroidal crystal geometries showing a greatly improved energy resolution.

8.
Rev Sci Instrum ; 92(5): 053102, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243250

RESUMO

We report the development of a high-resolution spectrometer for extended x-ray absorption fine structure (EXAFS) studies of materials under extreme conditions. A curved crystal and detector in the spectrometer are replaceable such that a single body is employed to perform EXAFS measurements at different x-ray energy intervals of interest. Two configurations have been implemented using toroidal crystals with Ge 311 reflection set to provide EXAFS at the Cu K-edge (energy range 8.9-9.8 keV) and Ge 400 reflection set to provide EXAFS at the Ta L3-edge (9.8-10.7 keV). Key performance characteristics of the spectrometer were found to be consistent with design parameters. The data generated at the National Ignition Facility have shown an ≃3 eV spectral resolution for the Cu K-edge configuration and ≃6 eV for the Ta L3-edge configuration.

9.
Rev Sci Instrum ; 92(3): 033519, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819987

RESUMO

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure iron opacities at varying densities and temperatures relevant to the solar interior and to verify recent experimental results obtained at the Sandia Z-machine, that diverge from theory. The first set of NIF experiments collected iron opacity data at ∼150 eV to 160 eV and an electron density of ∼7 × 1021 cm-3, with a goal to study temperatures up to ∼210 eV, with electron densities of up to ∼3 × 1022 cm-3. Among several techniques used to infer the temperature of the heated Fe sample, the absolutely calibrated DANTE-2 filtered diode array routinely provides measurements of the hohlraum conditions near the sample. However, the DANTE-2 temperatures are consistently low compared to pre-shot LASNEX simulations for a range of laser drive energies. We have re-evaluated the estimated uncertainty in the reported DANTE-2 temperatures and also the error generated by varying channel participation in the data analysis. An uncertainty of ±5% or better can be achieved with appropriate spectral coverage, channel participation, and metrology of the viewing slot.

10.
Rev Sci Instrum ; 92(3): 033502, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820003

RESUMO

In this work, we present the measurement of L-band emission from buried Sc/V targets in experiments performed at the OMEGA laser facility. The goal of these experiments was to study non-local thermodynamic equilibrium plasmas and benchmark atomic physics codes. The L-band emission was measured simultaneously by the time resolved DANTE power diagnostic and the recently fielded time integrated Soreq-Transmission Grating Spectrometer (TGS) diagnostic. The TGS measurement was used to support the spectral reconstruction process needed for the unfolding of the DANTE data. The Soreq-TGS diagnostic allows for broadband spectral measurement in the 120 eV-2000 eV spectral band, covering L- and M-shell emission of mid- and high-Z elements, with spectral resolution λ/Δλ = 8-30 and accuracy better than 25%. The Soreq-TGS diagnostic is compatible with ten-inch-manipulator platforms and can be used for a wide variety of high energy density physics, laboratory astrophysics, and inertial confinement fusion experiments.

11.
Rev Sci Instrum ; 92(3): 033506, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820043

RESUMO

A major upgrade has been implemented for the ns-gated laser entrance hole imager on the National Ignition Facility (NIF) to obtain high-quality data for Hohlraum physics study. In this upgrade, the single "Furi" hCMOS sensor (1024 × 448 pixel arrays with two-frame capability) is replaced with dual "Icarus" sensors (1024 × 512 pixel arrays with four-frame capability). Both types of sensors were developed by Sandia National Laboratories for high energy density physics experiments. With the new Icarus sensors, the new diagnostic provides twice the detection area with improved uniformity, wider temporal coverage, flexible timing setup, and greater sensitivity to soft x rays (<2 keV). These features, together with the fact that the diagnostic is radiation hardened and can be operated on the NIF for high neutron yield deuterium-triterium experiments, enable significantly greater return of data per experiment.

12.
Rev Sci Instrum ; 92(3): 033525, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820090

RESUMO

Fine-structure x-ray spectra have been measured from foils with embedded tracer layers at two laser facilities. A suite of layered foils with thin Ti tracers under varied tamper layers was studied at both the Titan and the ALEPH 400 nm laser facilities, where Ti Heα emission was recorded using a high-resolution Bragg crystal spectrometer. Several indicators of plasma parameters are examined in the spectra, including temperature- and density-dependent line ratios and line broadening from Stark and opacity effects. Spectra indicate that (1) the plasma density at ALEPH is significantly higher than at Titan and (2) the electron temperature is high for near-surface layers at both facilities but drops more quickly with depth at ALEPH. These inferences of plasma conditions are consistent with differing levels of temporal contrast at each laser facility.

13.
Rev Sci Instrum ; 92(3): 033505, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820103

RESUMO

DANTE is a diagnostic used to measure the x-radiation drive produced by heating a high-Z cavity ("hohlraum") with high-powered laser beams. It records the spectrally and temporally resolved radiation flux at x-ray energies between 50 eV and 20 keV. Each sensor configuration on DANTE is composed of filters, mirrors, and x-ray diodes to define 18 different x-ray channels whose output is voltage as a function of time. The absolute flux is then determined from the photometric calibration of the sensor configuration and a spectral reconstructing algorithm. The reconstruction of the spectra vs time from the measured voltages and known response of each channel has presented challenges. We demonstrate a novel approach here for quantifying the error on the determined flux based on the channel sensor configuration and most commonly used reconstruction algorithm. In general, we find that the integrated spectral flux from a hohlraum can robustly be reconstructed (within ∼14%) using a traditional unfold approach with as few as ten channels due to the underlying assumption of a largely Planckian spectral intensity distribution.

14.
Phys Rev Lett ; 126(8): 085001, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709744

RESUMO

In a plasma of sufficient size and density, photons emitted within the system have a probability of being reabsorbed and reemitted multiple times-a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering.

15.
Rev Sci Instrum ; 91(8): 083507, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872957

RESUMO

Filtered diode array spectrometers are routinely employed to infer the temporal evolution of spectral power from x-ray sources, but uniquely extracting spectral content from a finite set of broad, spectrally overlapping channel spectral sensitivities is decidedly nontrivial in these under-determined systems. We present the use of genetic algorithms to reconstruct a probabilistic spectral intensity distribution and compare to the traditional approach most commonly found in the literature. Unlike many of the previously published models, spectral reconstructions from this approach are neither limited by basis functional forms nor do they require a priori spectral knowledge. While the original intent of such measurements was to diagnose the temporal evolution of spectral power from quasi-blackbody radiation sources-where the exact details of spectral content were not thought to be crucial-we demonstrate that this new technique can greatly enhance the utility of the diagnostic by providing more physical spectra and improved robustness to hardware configuration for even strongly non-Planckian distributions.

16.
Rev Sci Instrum ; 91(8): 086101, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872967

RESUMO

Extended x-ray absorption fine structure (EXAFS) measurements require a bright and continuous x-ray source and a detection system with high spectral resolution to capture the modulations of the absorption coefficient above the material absorption edge. When performing EXAFS measurements under laser-driven dynamic compression, it is hence critical to optimize the backlighter x-ray emission. A series of experiments has been conducted at the OMEGA laser facility to characterize titanium (Z = 22), iron (Z = 26), germanium (Z = 32), molybdenum (Z = 42), silver (Z = 47), and gold (Z = 79) foil backlighters irradiated with 3 kJ-12 kJ of laser energy. The spectra have been recorded using a dual crystal spectrometer (DCS), a two-channel transmission spectrometer covering 11 keV-45 keV and 19 keV-90 keV energy bands. The DCS has been calibrated so that the spectral intensities can be compared between different campaigns.

18.
Rev Sci Instrum ; 90(1): 013506, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709229

RESUMO

The sensitivity of Fuji SR and MS image plates (IPs) used in x-ray spectrometers on OMEGA and the National Ignition Facility has been measured using two techniques. A set of radioisotopes has been used to constrain image-plate sensitivity between 6 and 60 keV, while a Manson source has been used to expose image plates to x rays at energies between 1.5 and 8 keV. These data have shown variation in sensitivity on the order of 5% for a given IP type and scanner settings. The radioisotope technique has also been used to assess IP fading properties for MS-type plates over long times. IP sensitivity as a function of scanner settings and pixel size has been systematically examined, showing variations of up to a factor of 2 depending on the IP type. Cross-calibration of IP scanners at different facilities is necessary to produce a consistent absolute sensitivity curve spanning the energy range of 2-60 keV.

19.
Rev Sci Instrum ; 89(10): 10F119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399669

RESUMO

At large laser faculties, such as OMEGA and the National Ignition Facility (NIF), x-ray spectrometers are provided by the facility to diagnose plasma conditions or monitor backlighters. Often the calibration of these spectrometers is unknown or out of date. As a remedy to this situation, we present a simple ray trace method to calibrate flat crystal spectrometers using only basic information regarding the optical design of the spectrometer. This model is then used to output photometric throughput estimates, dispersion, solid angle, and spectral resolution estimates. This model is applied to the mono angle crystal spectrometer and Super Snout I at the NIF and the X-Ray Spectrometer at the OMEGA laser facility.

20.
Rev Sci Instrum ; 89(10): 10F101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399753

RESUMO

A point-projection soft X-ray Opacity Spectrometer (OpSpec) has been implemented to measure X-ray spectra from ∼1 to 2 keV on the National Ignition Facility (NIF). Measurement of such soft X-rays with open-aperture point-projection detectors is challenging because only very thin filters may be used to shield the detector from the hostile environment. OpSpec diffracts X-rays from 540 to 2100 eV off a potassium (or rubidium) acid phthalate (KAP or RbAP) crystal onto either image plates or, most recently, X-ray films. A "sacrificial front filter" strategy is used to prevent crystal damage, while 2 or 3 rear filters protect the data. Since May 2017, OpSpec has been recording X-ray transmission data for iron-magnesium plasmas on the NIF, at "Anchor 1" plasma conditions (temperature ∼150 eV, density ∼7 × 1021 e -/cm3). Upgrades improved OpSpec's performance on 6 NIF shots in August and December 2017, with reduced backgrounds and 100% data return using filter stacks as thin as 2.9 µm (total). Photometric noise is beginning to meet requirements, and further work will reduce systematic errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA