Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Traffic ; 25(1): e12922, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926971

RESUMO

The parasite Plasmodium falciparum causes the most severe form of malaria and to invade and replicate in red blood cells (RBCs), it exports hundreds of proteins across the encasing parasitophorous vacuole membrane (PVM) into this host cell. The exported proteins help modify the RBC to support rapid parasite growth and avoidance of the human immune system. Most exported proteins possess a conserved Plasmodium export element (PEXEL) motif with the consensus RxLxE/D/Q amino acid sequence, which acts as a proteolytic cleavage recognition site within the parasite's endoplasmic reticulum (ER). Cleavage occurs after the P1 L residue and is thought to help release the protein from the ER so it can be putatively escorted by the HSP101 chaperone to the parasitophorous vacuole space surrounding the intraerythrocytic parasite. HSP101 and its cargo are then thought to assemble with the rest of a Plasmodium translocon for exported proteins (PTEX) complex, that then recognises the xE/D/Q capped N-terminus of the exported protein and translocates it across the vacuole membrane into the RBC compartment. Here, we present evidence that supports a dual role for the PEXEL's conserved P2 ' position E/Q/D residue, first, for plasmepsin V cleavage in the ER, and second, for efficient PTEX mediated export across the PVM into the RBC. We also present evidence that the downstream 'spacer' region separating the PEXEL motif from the folded functional region of the exported protein controls cargo interaction with PTEX as well. The spacer must be of a sufficient length and permissive amino acid composition to engage the HSP101 unfoldase component of PTEX to be efficiently translocated into the RBC compartment.


Assuntos
Parasitos , Plasmodium , Animais , Humanos , Plasmodium falciparum/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Plasmodium/metabolismo , Eritrócitos/parasitologia , Parasitos/metabolismo
2.
Nat Commun ; 8: 16044, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691708

RESUMO

The malaria parasite, Plasmodium falciparum, displays the P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of infected red blood cells (RBCs). We here examine the physical organization of PfEMP1 trafficking intermediates in infected RBCs and determine interacting partners using an epitope-tagged minimal construct (PfEMP1B). We show that parasitophorous vacuole (PV)-located PfEMP1B interacts with components of the PTEX (Plasmodium Translocon of EXported proteins) as well as a novel protein complex, EPIC (Exported Protein-Interacting Complex). Within the RBC cytoplasm PfEMP1B interacts with components of the Maurer's clefts and the RBC chaperonin complex. We define the EPIC interactome and, using an inducible knockdown approach, show that depletion of one of its components, the parasitophorous vacuolar protein-1 (PV1), results in altered knob morphology, reduced cell rigidity and decreased binding to CD36. Accordingly, we show that deletion of the Plasmodium berghei homologue of PV1 is associated with attenuation of parasite virulence in vivo.


Assuntos
Interações Hospedeiro-Patógeno , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Proteínas de Transporte/metabolismo , Adesão Celular , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética , Plasmodium falciparum/patogenicidade , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA