Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 87(11): 2622-2633, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37318915

RESUMO

Nutrient recovery from wastewater is an effective strategy to prevent eutrophication and provide value for the treatment process. Human urine is a small but highly nutrient-rich stream in the total flux of domestic wastewater from which struvite (MgNH4PO4.6H2O) could be recovered and used as a fertiliser. Consequently, synthetic urine was used in most struvite precipitation studies, due to biohazard issues in real human urine. A modelling approach was developed to formulate synthetic urine recipes based on elemental urine composition, using matrix solving strategy to select and quantify chemical salts for synthetic urine preparation. The model also included mass balance, chemical speciation, and equilibrium dissociation expression for solution thermodynamics predictions in the formulated urine. In this study, synthetic solutions of fresh and stored urine were assessed with this model using Engineering Equation Solver (EES) software to calculate the quantity of salts, pH, ionic strength, and struvite saturation index. Simulation results in EES were successfully verified using PHREEQC simulations, while model validation comprised the examination of urine composition with their reported recipes.


Assuntos
Fosfatos , Águas Residuárias , Humanos , Estruvita , Fosfatos/química , Compostos de Magnésio/química , Sais , Precipitação Química , Fósforo/química , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA