Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366928

RESUMO

Monitoring of bioinoculants once released into the field remains largely unexplored; thus, more information is required about their survival and interactions after root colonization. Therefore, specific primers were used to perform a long-term tracking to elucidate the effect of Hartmannibacter diazotrophicus on wheat and barley production at two experimental organic agriculture field stations. Three factors were evaluated: organic fertilizer application (with and without), row spacing (15 and 50 cm), and bacterial inoculation (H. diazotrophicus and control without bacteria). Hartmannibacter diazotrophicus was detected by quantitative polymerase chain reaction on the roots (up to 5 × 105 copies g-1 dry weight) until advanced developmental stages under field conditions during two seasons, and mostly in one farm. Correlation analysis showed a significant effect of H. diazotrophicus copy numbers on the yield parameters straw yield (increase of 453 kg ha-1 in wheat compared to the mean) and crude grain protein concentration (increase of 0.30% in wheat and 0.80% in barley compared to the mean). Our findings showed an apparently constant presence of H. diazotrophicus on both wheat and barley roots until 273 and 119 days after seeding, respectively, and its addition and concentration in the roots are associated with higher yields in one crop.


Assuntos
Agricultura , Alphaproteobacteria , Hordeum , Estações do Ano , Triticum/microbiologia , Bactérias
3.
Microbiol Res ; 281: 127601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218094

RESUMO

Modern crops might have lost some of their functional traits, required for interacting with beneficial microbes, as a result of the genotypic/phenotypic modifications that occurred during domestication. Here, we studied the bacterial and fungal microbiota in the rhizosphere of two cultivated wheat species (Triticum aestivum and T. durum) and their respective ancestors (Aegilops tauschii and T. dicoccoides), in three experimental fields, by using metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. Moreover, the abundance of bacterial genes involved in N- and P-cycles was estimated by quantitative PCR, and urease, alkaline phosphatase and phosphomonoesterase activities were assessed by enzymatic tests. The relationships between microbiota and environmental metadata were tested by correlation analysis. The assemblage of core microbiota was affected by both site and plant species. No significant differences in the abundance of potential fungal pathogens between wild and cultivated wheat species were found; however, co-occurrence analysis showed more bacterial-fungal negative correlations in the wild species. Concerning functions, the nitrogen denitrification nirS gene was consistently more abundant in the rhizosphere of A. tauschii than T. aestivum. Urease activity was higher in the rhizosphere of each wild wheat species in at least two of the research locations. Several microbiota members, including potentially beneficial taxa such as Lysobacter and new taxa such as Blastocatellaceae, were found to be strongly correlated to rhizospheric soil metadata. Our results showed that a functional microbiome shift occurred as a result of wheat domestication. Notably, these changes also included the reduction of the natural biocontrol potential of rhizosphere-associated bacteria against pathogenic fungi, suggesting that domestication disrupted the equilibrium of plant-microbe relationships that had been established during million years of co-evolution.


Assuntos
Microbiota , Rizosfera , Domesticação , Triticum/microbiologia , RNA Ribossômico 16S/genética , Urease , Microbiota/genética , Bactérias/genética , Solo , Produtos Agrícolas/microbiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38127241

RESUMO

The use of antibiotics unbalances the intestinal microbiota. Probiotics, prebiotics, and synbiotics are alternatives for these unbalances. The effects of a new synbiotic composed of probiotic Saccharomyces boulardii CNCM I-745 and fructans from Agave salmiana (fAs) as prebiotics were assessed to modulate the intestinal microbiota. Two probiotic presentations, the commercial probiotic (CP) and the microencapsulated probiotic (MP) to improve those effects, were used to prepare the synbiotics and feed Wistar rats subjected to antibiotics (AB). Eight groups were studied, including five controls and three groups to modulate the microbiota after the use of antibiotics: G5: AB + MP-synbiotic, G6: AB + CP-synbiotic, and G8: AB + fAs. All treatments were administered daily for 7 days. On days 7 and 21, euthanasia was performed, cecum tissue was recovered and used to evaluate histological analysis and to study microphotograph by TEM, and finally, bacterial DNA was extracted and 16S rRNA gene metabarcode sequencing was performed. Histological analysis showed less epithelial damage and more abundance of the intestinal microbiota in the groups G5, G6, and G8 in comparison with the AB control group after 7 days. Microphotograph of the cecum at 2 weeks post treatment showed that G5 and G6 presented beneficial effects in epithelial reconstruction. Interestingly, in the groups that used the synbiotic without AB (G3 and G4) in addition to contributing to the recovery of the autochthonous microbiota, it promotes the development of beneficial microorganisms; those results were also achieved in the groups that used the synbiotic with AB enhancing the bacterial diversity and regulating the impact of AB.

5.
Curr Microbiol ; 80(12): 384, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872440

RESUMO

The obligate biotrophic fungal pathogen Blumeria graminis causes the powdery mildew disease of cereals, which results in large crop losses. Control of B. graminis in barley is mainly achieved by fungicide treatment and by breeding resistant varieties. Vampyrellid amoebae, just like mycophagous protists, are able to consume a variety of fungi. To reveal the impact of some selected fungus-consuming protists on Blumeria graminis f. sp. hordei (Bgh), and to evaluate the possibility of using these protists as biological agents in the future, their feeding behaviour on B. graminis spores on barley leaves was investigated. An experiment was carried out with five different protist isolates (Leptophrys vorax, Platyreta germanica, Theratromyxa weberi U 11, Theratromyxa weberi G7.2 and Acanthamoeba castellanii) and four matched controls, including the food sources of the cultures and the medium. Ten-day-old leaves of barley (Hordeum vulgare cv. Golden Promise) were first inoculated with Blumeria graminis (f. sp. hordei race A6) spores, then treated with protists and fungal colonies on the leaf surfaces were counted under the microscope after 5 days. The isolates L. vorax, P. germanica, and T. weberi U11 did not show a significant reduction in the number of powdery mildew colonies whereas the isolates T. weberi G7.2 and A. castellanii significantly reduced the number of powdery mildew colonies on the leaf surfaces compared to their respective controls. This indicates that these two isolates are capable of reducing B. graminis colonies on barley leaves and are suitable candidates for further investigation for possible use as biological agents. Nevertheless, the susceptibility to dryness and the cell division rate should be considered during the optimisation of the next steps like application procedure and whole plant treatment.


Assuntos
Ascomicetos , Hordeum , Hordeum/microbiologia , Folhas de Planta/microbiologia , Fatores Biológicos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
Curr Microbiol ; 80(7): 234, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278851

RESUMO

One gram-negative strain designated Bb-Pol-6 T was isolated from birch (Betula pendula) pollen at Giessen area, Germany. The analysis of 16S rRNA gene-based phylogenies indicated the next-relative genera were Robbsia, Chitinasiproducens, Pararobbsia and Paraburkholderia (96-95.6%). Further comparative genome analysis and phylogenetic tree-based methods revealed its phylogenetic position under the genus Robbsia. The genome of strain Bb-Pol-6 T was 5.04 Mbp with 4401 predicted coding sequences and a G + C content of 65.31 mol%. Average amino acid identity, average nucleotide identity, digital DNA-DNA hybridization and percentage of conserved proteins values to Robbsia andropogonis DSM 9511 T were 68.0, 72.5, 22.7 and 65.85%, respectively. Strain Bb-Pol-6 T was rod-shaped, non-motile, facultative anaerobic and grew optimally at 28 °C and pH 6-7. Ubiquinone 8 was the major respiratory quinone and the major cellular fatty acids were C16:0, C19:0 cyclo ω7c, C17:0 cyclo ω7c and C17:1 ω6c. The dominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. Based on the genomic physiological and phenotypic characteristics, strain Bb-Pol-6 T was considered a novel species under the genus Robbsia, for which the name Robbsia betulipollinis sp. nov. was proposed. The type strain is Bb-Pol-6 T (= LMG 32774 T = DSM 114812 T).


Assuntos
Betula , Fosfolipídeos , Fosfolipídeos/química , Betula/genética , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Pólen/química , DNA , DNA Bacteriano/genética , Análise de Sequência de DNA
7.
BMC Microbiol ; 23(1): 46, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809988

RESUMO

BACKGROUND: Elevated carbon dioxide concentrations (eCO2), one of the main causes of climate change, have several consequences for both vine and cover crops in vineyards and potentially also for the soil microbiome. Hence soil samples were taken from a vineyard free-air CO2 enrichment (VineyardFACE) study in Geisenheim and examined for possible changes in the soil active bacterial composition (cDNA of 16S rRNA) using a metabarcoding approach. Soil samples were taken from the areas between the rows of vines with and without cover cropping from plots exposed to either eCO2 or ambient CO2 (aCO2). RESULTS: Diversity indices and redundancy analysis (RDA) demonstrated that eCO2 changed the active soil bacterial diversity in grapevine soil with cover crops (p-value 0.007). In contrast, the bacterial composition in bare soil was unaffected. In addition, the microbial soil respiration (p-values 0.04-0.003) and the ammonium concentration (p-value 0.003) were significantly different in the samples where cover crops were present and exposed to eCO2. Moreover, under eCO2 conditions, qPCR results showed a significant decrease in 16S rRNA copy numbers and transcripts for enzymes involved in N2 fixation and NO2- reduction were observed using qPCR. Co-occurrence analysis revealed a shift in the number, strength, and patterns of microbial interactions under eCO2 conditions, mainly represented by a reduction in the number of interacting ASVs and the number of interactions. CONCLUSIONS: The results of this study demonstrate that eCO2 concentrations changed the active soil bacterial composition, which could have future influence on both soil properties and wine quality.


Assuntos
Microbiota , Solo , Dióxido de Carbono , RNA Ribossômico 16S , Produtos Agrícolas , Bactérias
8.
Microbiol Res ; 266: 127250, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343596

RESUMO

Bacteria play an important role in the life cycle of fungi by influencing positively or negatively morphological features, mycelial growth and/or fruiting body induction. However, little is known about the underlying mechanisms and their species-dependence, especially among fungi of the phylum Basidiomycota. Hence, we analyzed the effects of seven bacterial isolates, that were previously obtained from Pleurotus ostreatus HK35, on the mycelial growth of P. ostreatus HK35, Pleurotus eryngii DSMZ 8264, Pleurotus sapidus DSMZ 8266, Pleurotus citrinopileatus DSMZ 5341, Cyclocybe aegerita AAE-3, Lentinula edodes CBS 389.89 and Kuehneromyces mutabilis DSMZ 1013 during eight days. Notably, the bacterial isolates only showed significant mycelial growth-promoting effects when co-cultivated on Petri dishes with Pleurotus species, except for P. citrinopileatus. In particular, Paenibacillus peoriae strain M48F induced remarkably the mycelial growth in P. ostreatus (∼47 %), P. eryngii (∼32 %) and P. sapidus (∼27 %) during the early cultivation stages, but with ongoing cultivation this strain inhibited the growth of all fungi. To investigate the impact of bacterial volatile organic compounds (VOCs) on the mycelial growth, P. ostreatus and P. eryngii were co-cultivated with the bacteria on bi-plates. No growth inhibition on bi-plates was observed while bacterial isolates and mycelia were separated by a physical barrier, assuring that late mycelial growth inhibition was not caused by bacterial volatile compounds. VOCs from strain M48F induced the strongest growth of P. ostreatus (∼50 %) and P. eryngii (∼20 %) mycelia compared to controls. Furthermore, we analyzed the VOCs of strain M48F alone and in combination with P. ostreatus, P. eryngii, P. sapidus and L. edodes using bi-plates and SPME-GC-MS. Strain M48F triggered the formation of ß-bisabolene when co-cultivated with P. ostreatus or P. eryngii, which may indicate a fungal defense reaction. Additionally, 2,5-diisopropylpyrazine dominated the volatilome of strain M48F on all eight sampling days. In samples of strain M48F, alone and co-cultivated with L. edodes, the amount of 2,5-diisopropylpyrazine remained quite constant. In contrast, the quantity of this substance declined substantially in co-cultures with P. ostreatus. Interestingly, 2,5-diisopropylpyrazine enhanced P. ostreatus mycelial growth significantly although the growth-promoting effect was not as pronounced as during co-cultivation with strain M48F. Our results show that the mycelial growth-promoting effects of bacteria are remarkably species-dependent, and that bacterial VOCs such as 2,5-diisopropylpyrazine can enhance mycelial growth.


Assuntos
Agaricales , Ascomicetos , Pleurotus , Compostos Orgânicos Voláteis , Micélio , Bactérias , Compostos Orgânicos Voláteis/farmacologia
9.
Front Microbiol ; 13: 937021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081791

RESUMO

Soil organisms play an important role in the equilibrium and cycling of nutrients. Because elevated CO2 (eCO2) affects plant metabolism, including rhizodeposition, it directly impacts the soil microbiome and microbial processes. Therefore, eCO2 directly influences the cycling of different elements in terrestrial ecosystems. Hence, possible changes in the cycles of carbon (C), nitrogen (N), and sulfur (S) were analyzed, alongside the assessment of changes in the composition and structure of the soil microbiome through a functional metatranscriptomics approach (cDNA from mRNA) from soil samples taken at the Giessen free-air CO2 enrichment (Gi-FACE) experiment. Results showed changes in the expression of C cycle genes under eCO2 with an increase in the transcript abundance for carbohydrate and amino acid uptake, and degradation, alongside an increase in the transcript abundance for cellulose, chitin, and lignin degradation and prokaryotic carbon fixation. In addition, N cycle changes included a decrease in the transcript abundance of N2O reductase, involved in the last step of the denitrification process, which explains the increase of N2O emissions in the Gi-FACE. Also, a shift in nitrate ( NO 3 - ) metabolism occurred, with an increase in transcript abundance for the dissimilatory NO 3 - reduction to ammonium ( NH 4 + ) (DNRA) pathway. S metabolism showed increased transcripts for sulfate ( SO 4 2 - ) assimilation under eCO2 conditions. Furthermore, soil bacteriome, mycobiome, and virome significantly differed between ambient and elevated CO2 conditions. The results exhibited the effects of eCO2 on the transcript abundance of C, N, and S cycles, and the soil microbiome. This finding showed a direct connection between eCO2 and the increased greenhouse gas emission, as well as the importance of soil nutrient availability to maintain the balance of soil ecosystems.

10.
Access Microbiol ; 4(5): acmi000345, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36003361

RESUMO

In Parkinson's disease (PD), α-synuclein is a key protein in the process of neurodegeneration. Besides motor symptoms, most PD patients additionally suffer from gastrointestinal tract (GIT) dysfunctions, even several years before the onset of motor disabilities. Studies have reported a dysbiosis of gut bacteria in PD patients compared to healthy controls and have suggested that the enteric nervous system (ENS) can be involved in the development of the disease. As α-synuclein was found to be secreted by neurons of the ENS, we used RNA-based stable isotope probing (RNA-SIP) to identify gut bacteria that might be able to assimilate this protein. The gut contents of 24 mice were pooled and incubated with isotopically labelled (13C) and unlabelled (12C) α-synuclein. After incubation for 0, 4 and 24 h, RNA was extracted from the incubations and separated by density gradient centrifugation. However, RNA quantification of density-resolved fractions revealed no incorporation of the 13C isotope into the extracted RNA, suggesting that α-synuclein was not assimilated by the murine gut bacteria. Potential reasons and consequences for follow-up-studies are discussed.

11.
Inflammation ; 45(6): 2186-2201, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35668156

RESUMO

Sensitization to pollen allergens has been increasing in Europe every year. Most studies in this field are related to climate change, phenology, allergens associated with different pollens, and allergic disorders. As a plant microhabitat, pollen is colonized by diverse microorganisms, including endotoxin-producing bacteria which may contribute to pollen allergy (pollinosis). Therefore, bacteria isolated from high allergenic and low allergenic plant pollen, as well as the pollen itself with all microbial inhabitants, were used to assess the effect of the pollen by measuring the endotoxins lipopolysaccharides (LPS) and lipoteichoic acid (LTA) concentrations and their effect on chemokine and cytokine release from transwell cultured epithelial A549 cells as a model of epithelial lung barrier. High allergenic pollen showed a significantly higher level of bacterial endotoxins; interestingly, the endotoxin level found in the bacterial isolates from high allergenic pollen was significantly higher compared to that of bacteria from low allergenic pollen. Moreover, bacterial LPS concentrations across different pollen species positively correlated with the LPS concentration across their corresponding bacterial isolates. Selected bacterial isolates from hazel pollen (HA5, HA13, and HA7) co-cultured with A549 cells induced a potent concentration-dependent release of the chemokine interleukin-8 and monocyte chemotactic protein-1 as well as the cytokine TNF-alpha and interleukin-2 to both apical and basal compartments of the transwell model. This study clearly shows the role of bacteria and bacterial endotoxins in the pollen allergy as well as seasonal allergic rhinitis.


Assuntos
Alérgenos , Rinite Alérgica Sazonal , Humanos , Lipopolissacarídeos , Endotoxinas , Citocinas , Células A549 , Pólen , Quimiocinas , Bactérias
12.
Arch Microbiol ; 204(7): 363, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35661258

RESUMO

Kitchen sponges are particularly well known to harbor a high number and diversity of bacteria, including pathogens. Viruses, archaea, and eukaryotes in kitchen sponges, however, have not been examined in detail so far. To increase knowledge on the non-bacterial kitchen sponge microbiota and its potential hygienic relevance, we investigated five used kitchen sponges by means of metagenomic shot-gun sequencing. Viral particles were sought to be enriched by a filter step during DNA extraction from the sponges. Data analysis revealed that ~ 2% of the sequences could be assigned to non-bacterial taxa. Each sponge harbored different virus (phage) species, while the present archaea were predominantly affiliated with halophilic taxa. Among the eukaryotic taxa, besides harmless algae, or amoebas, mainly DNA from food-left-overs was found. The presented work offers new insights into the complex microbiota of used kitchen sponges and contributes to a better understanding of their hygienic relevance.


Assuntos
Microbiota , Poríferos , Animais , Archaea/genética , Bactérias/genética , Metagenoma , Metagenômica , Microbiota/genética , Filogenia , Poríferos/genética
13.
Int J Food Microbiol ; 365: 109549, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35074659

RESUMO

Certain yeast species belonging to the Pichia genus are known to form a distinctive film on grape must and wine. In a mixed-culture type fermentation, Pichia spp. (P. kluyveri in particular) are known to impart beneficial oenological attributes. In this study, we report on an easy isolation method of Pichia spp. from grape must by exploiting their film-forming capacity on media containing 10% ethanol. We isolated and identified two Pichia species, namely Pichia kudriavzevii and Pichia kluyveri, and subsequently co-inoculated them with Saccharomyces cerevisiae to ferment Gewürztraminer musts. Noteworthy differences included a significant increase in the 2-phenethyl acetate levels with the P. kluyveri co-fermentation and a general increase in ethyl esters with the P. kudriavzevii co-fermentation. Both Pichia co-inoculations yielded higher levels of glycerol in the final wines. Based on all the wine parameters we tested, the P. kluyveri strain that was isolated performed similarly to a commercial P. kluyveri strain.


Assuntos
Vitis , Vinho , Fermentação , Pichia , Saccharomyces cerevisiae , Vinho/análise
14.
Microb Ecol ; 83(3): 619-634, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34148108

RESUMO

Elevated levels of atmospheric CO2 lead to the increase of plant photosynthetic rates, carbon inputs into soil and root exudation. In this work, the effects of rising atmospheric CO2 levels on the metabolic active soil microbiome have been investigated at the Giessen free-air CO2 enrichment (Gi-FACE) experiment on a permanent grassland site near Giessen, Germany. The aim was to assess the effects of increased C supply into the soil, due to elevated CO2, on the active soil microbiome composition. RNA extraction and 16S rRNA (cDNA) metabarcoding sequencing were performed from bulk and rhizosphere soils, and the obtained data were processed for a compositional data analysis calculating diversity indices and differential abundance analyses. The structure of the metabolic active microbiome in the rhizospheric soil showed a clear separation between elevated and ambient CO2 (p = 0.002); increased atmospheric CO2 concentration exerted a significant influence on the microbiomes differentiation (p = 0.01). In contrast, elevated CO2 had no major influence on the structure of the bulk soil microbiome (p = 0.097). Differential abundance results demonstrated that 42 bacterial genera were stimulated under elevated CO2. The RNA-based metabarcoding approach used in this research showed that the ongoing atmospheric CO2 increase of climate change will significantly shift the microbiome structure in the rhizosphere.


Assuntos
Microbiota , Rizosfera , Dióxido de Carbono/metabolismo , Microbiota/genética , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
15.
NPJ Parkinsons Dis ; 7(1): 101, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795317

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative disease, and is so far not considered curable. PD patients suffer from several motor and non-motor symptoms, including gastrointestinal dysfunctions and alterations of the enteric nervous system. Constipation and additional intestinal affections can precede the classical motor symptoms by several years. Recently, we reported effects of PD and related medications on the faecal bacterial community of 34 German PD patients and 25 age-matched controls. Here, we used the same collective and analysed the V6 and V7 hypervariable region of PCR-amplified, eukaryotic 18S rRNA genes using an Illumina MiSeq platform. In all, 53% (18) of the PD samples and 72% (18) of the control samples yielded sufficient amplicons for downstream community analyses. The PD samples showed a significantly lower alpha and a different beta eukaryotic diversity than the controls. Most strikingly, we observed a significantly higher relative abundance of sequence affiliated with the Geotrichum genus in the PD samples (39.7%), when compared to the control samples (0.05%). In addition, we observed lower relative abundances of sequences affiliated with Aspergillus/Penicillium, Charophyta/Linum, unidentified Opisthokonta and three genera of minor abundant zooflagellates in the PD samples. Our data add knowledge to the small body of data about the eukaryotic microbiota of PD patients and suggest a potential association of certain gut eukaryotes and PD.

16.
World J Microbiol Biotechnol ; 37(11): 188, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34611812

RESUMO

In this study, the taxonomic and functional diversity of methanogenic archaea in two parallel 120 l fermenters operated at different temperatures and fed with maize silage was estimated by mcrA metabarcoding analysis using two typical primer pairs (ML and MLA) amplifying part of the functional methyl coenzyme M reductase (mcrA) gene. The alpha diversity indices showed that the ML primer pair detected a higher Operational Taxonomic Unit (OTU) abundance compared to the MLA primer pair and methanogen diversity was significantly lower in the 60 °C fermenters. The beta diversity analysis showed the methanogenic community clustered together at 50 °C and 40° and was statistically different from the 60 °C community. Similar, to alpha diversity, beta diversity was also significantly different between primer pairs. At all temperatures analysed, the primer pairs showed a different abundance of the different methanogenic OTUs, e.g. more OTUs relative to Methanoculleus sp. with the ML primer pair, and more OTUs corresponding to Methanobacterium sp. with the MLA primer pair. Moreover, OTUs corresponding to Methanosphaera sp. and Methanobrevibacter sp. were found only by using ML primer pair, while the MLA primer pair detected sequences corresponding to Methanothrix sp.


Assuntos
Archaea/genética , Archaea/metabolismo , Biocombustíveis , Fermentação , Oxirredutases/genética , Temperatura , Biodiversidade , Reatores Biológicos , DNA Arqueal/genética , Euryarchaeota , Metano , Filogenia
17.
Microorganisms ; 9(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34442670

RESUMO

Microbially contaminated washing machines and mild laundering conditions facilitate the survival and growth of microorganisms on laundry, promoting undesired side effects such as malodor formation. Clearly, a deeper understanding of the functionality and hygienic relevance of the laundry microbiota necessitates the analysis of the microbial gene expression on textiles after washing, which-to the best of our knowledge-has not been performed before. In this pilot case study, we used single-end RNA sequencing to generate de novo transcriptomes of the bacterial communities remaining on polyester and cotton fabrics washed in a domestic washing machine in mild conditions and subsequently incubated under moist conditions for 72 h. Two common de novo transcriptome assemblers were used. The final assemblies included 22,321 Trinity isoforms and 12,600 Spades isoforms. A large part of these isoforms could be assigned to the SwissProt database, and was further categorized into "molecular function", "biological process" and "cellular component" using Gene Ontology (GO) terms. In addition, differential gene expression was used to show the difference in the pairwise comparison of the two tissue types. When comparing the assemblies generated with the two assemblers, the annotation results were relatively similar. However, there were clear differences between the de novo assemblies regarding differential gene expression.

18.
J Adv Res ; 31: 75-86, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194833

RESUMO

Introduction: The seed-associated microbiome has a strong influence on plant ecology, fitness, and productivity. Plant microbiota could be exploited for a more responsible crop management in sustainable agriculture. However, the relationships between seed microbiota and hosts related to the changes from ancestor species to breeded crops still remain poor understood. Objectives: Our aims were i) to understand the effect of cereal domestication on seed endophytes in terms of diversity, structure and co-occurrence, by comparing four cereal crops and the respective ancestor species; ii) to test the phylogenetic coherence between cereals and their seed microbiota (clue of co-evolution). Methods: We investigated the seed microbiota of four cereal crops (Triticum aestivum, Triticum monococcum, Triticum durum, and Hordeum vulgare), along with their respective ancestors (Aegilops tauschii, Triticum baeoticum, Triticum dicoccoides, and Hordeum spontaneum, respectively) using 16S rRNA gene metabarcoding, Randomly Amplified Polymorphic DNA (RAPD) profiling of host plants and co-evolution analysis. Results: The diversity of seed microbiota was generally higher in cultivated cereals than in wild ancestors, suggesting that domestication lead to a bacterial diversification. On the other hand, more microbe-microbe interactions were detected in wild species, indicating a better-structured, mature community. Typical human-associated taxa, such as Cutibacterium, dominated in cultivated cereals, suggesting an interkingdom transfers of microbes from human to plants during domestication. Co-evolution analysis revealed a significant phylogenetic congruence between seed endophytes and host plants, indicating clues of co-evolution between hosts and seed-associated microbes during domestication. Conclusion: This study demonstrates a diversification of the seed microbiome as a consequence of domestication, and provides clues of co-evolution between cereals and their seed microbiota. This knowledge is useful to develop effective strategies of microbiome exploitation for sustainable agriculture.


Assuntos
Domesticação , Grão Comestível/microbiologia , Hordeum/microbiologia , Microbiota , Sementes/microbiologia , Triticum/microbiologia , Aegilops/genética , Aegilops/microbiologia , Evolução Biológica , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Grão Comestível/genética , Endófitos/metabolismo , Hordeum/genética , Humanos , Filogenia , Propionibacteriaceae/classificação , Propionibacteriaceae/genética , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Sementes/genética , Triticum/genética
19.
Microorganisms ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922491

RESUMO

Detergent drawer and door seal represent important sites for microbial life in domestic washing machines. Interestingly, quantitative data on the microbial contamination of these sites is scarce. Here, 10 domestic washing machines were swab-sampled for subsequent bacterial cultivation at four different sampling sites: detergent drawer and detergent drawer chamber, as well as the top and bottom part of the rubber door seal. The average bacterial load over all washing machines and sites was 2.1 ± 1.0 × 104 CFU cm-2 (average number of colony forming units ± standard error of the mean (SEM)). The top part of the door seal showed the lowest contamination (11.1 ± 9.2 × 101 CFU cm-2), probably due to less humidity. Out of 212 isolates, 178 (84%) were identified on the genus level, and 118 (56%) on the species level using matrix-assisted laser desorption/ionization (MALDI) Biotyping, resulting in 29 genera and 40 identified species across all machines. The predominant bacterial genera were Staphylococcus and Micrococcus, which were found at all sites. 22 out of 40 species were classified as opportunistic pathogens, emphasizing the need for regular cleaning of the investigated sites.

20.
Microorganisms ; 9(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924464

RESUMO

The microbiota associated with the rhizosphere is responsible for crucial processes. Understanding how the plant and its bacterial community interact is of great importance to face the upcoming agricultural and viticultural challenges. The composition of the bacterial communities associated with the rhizosphere of grapevines is the result of the interaction between many drivers: biogeography, edaphic factors, soil management and plant genotype. The experimental design of this study aimed to reduce the variability resulting from all factors except the genotype of the rootstock. This was made possible by investigating four ungrafted grapevine rootstock varieties of the same age, grown on the same soil under the same climatic conditions and managed identically. The bacterial communities associated with the rhizosphere of the rootstocks 1103 Paulsen, 140 Ruggeri, 161-49 Couderc and Kober 5BB were characterized with the amplicon based sequencing technique, targeting regions V4-V5 of 16S rRNA gene. Linear discriminant analysis effect Size (LEfSe) analysis was performed to determine differential abundant taxa. The four rootstocks showed similarities concerning the structure of the bacteria assemblage (richness and evenness). Nonetheless, differences were detected in the composition of the bacterial communities. Indeed, all investigated rootstocks recruited communities with distinguishable traits, thus confirming the role of rootstock genotype as driver of the bacteria composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA