Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 920: 148521, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38703868

RESUMO

Long noncoding RNAs (lncRNAs) are regulatory RNAs. Saccharomyces cerevisiae strains transcribe hundreds of lncRNAs. LncRNAs can regulate the expression of adjacent genes (cis-regulation) or distant genes from lncRNAs (trans-regulation). Here, we analyzed the potential global cis and trans-regulation of lncRNAs of yeast subjected to ethanol stress. For potential cis regulation, for BMA641-A and S288C strains, we observed that most lncRNA-neighbor gene pairs increased the expression at a certain point followed by a decrease, and vice versa. Based on the transcriptome profile and triple helix prediction between lncRNAs and promoters of coding genes, we observed nine different ways of potential trans regulation that work in a strain-specific manner. Our data provide an initial landscape of potential cis and trans regulation in yeast, which seems to be strain-specific.


Assuntos
Etanol , Regulação Fúngica da Expressão Gênica , RNA Longo não Codificante , Saccharomyces cerevisiae , Estresse Fisiológico , Saccharomyces cerevisiae/genética , RNA Longo não Codificante/genética , Etanol/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , RNA Fúngico/genética , RNA Fúngico/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma
2.
Heliyon ; 10(10): e31561, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818138

RESUMO

Elevated ethanol concentrations in yeast affect the plasma membrane. The plasma membrane in yeast has many lipid-protein complexes, such as Pma1 (MCP), Can1 (MCC), and the eisosome complex. We investigated the response of eisosomes, MCPs, and membraneless structures to ethanol stress. We found a correlation between ethanol stress and proton flux with quick acidification of the medium. Moreover, ethanol stress influences the symporter expression in stressed cells. We also suggest that acute stress from ethanol leads to increases in eisosome size and SG number: we hypothesized that eisosomes may protect APC symporters and accumulate an mRNA decay protein in ethanol-stressed cells. Our findings suggest that the joint action of these factors may provide a protective effect on cells under ethanol stress.

3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982719

RESUMO

Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.


Assuntos
RNA Longo não Codificante , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Longo não Codificante/genética , Etanol/farmacologia , Etanol/metabolismo
4.
PLoS Comput Biol ; 18(5): e1010081, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587936

RESUMO

Ethanol alters many subsystems of Saccharomyces cerevisiae, including the cell cycle. Two ethanol-responsive lncRNAs in yeast interact with cell cycle proteins, and here, we investigated the role of these RNAs in cell cycle. Our network dynamic modeling showed that higher and lower ethanol-tolerant strains undergo cell cycle arrest in mitosis and G1 phases, respectively, during ethanol stress. The higher population rebound of the lower ethanol-tolerant phenotype after stress relief responds to the late phase arrest. We found that the lncRNA lnc9136 of SEY6210 (a lower ethanol-tolerant strain) induces cells to skip mitosis arrest. Simulating an overexpression of lnc9136 and analyzing CRISPR-Cas9 mutants lacking this lncRNA suggest that lnc9136 induces a regular cell cycle even under ethanol stress, indirectly regulating Swe1p and Clb1/2 by binding to Gin4p and Hsl1p. Notably, lnc10883 of BY4742 (a higher ethanol-tolerant strain) does not prevent G1 arrest in this strain under ethanol stress. However, lnc19883 circumvents DNA and spindle damage checkpoints, maintaining a functional cell cycle by interacting with Mec1p or Bub1p even in the presence of DNA/spindle damage. Overall, we present the first evidence of direct roles for lncRNAs in regulating yeast cell cycle proteins, the dynamics of this system in different ethanol-tolerant phenotypes, and a new yeast cell cycle model.


Assuntos
RNA Longo não Codificante , Proteínas de Saccharomyces cerevisiae , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Etanol/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA