Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microencapsul ; 41(3): 170-189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469757

RESUMO

The study aimed to develop a solid biofertilizer using Bacillus pumilus, focusing on auxin production to enhance plant drought tolerance. Methods involved immobilising B. pumilus in alginate-starch beads, focusing on microbial concentration, biopolymer types, and environmental conditions. The optimal formulation showed a diameter of 3.58 mm ± 0.18, a uniform size distribution after 15 h of drying at 30 °C, a stable bacterial concentration (1.99 × 109 CFU g-1 ± 1.03 × 109 over 180 days at room temperature), a high auxin production (748.8 µg g-1 ± 10.3 of IAA in 7 days), and a water retention capacity of 37% ± 4.07. In conclusion, this new formulation of alginate + starch + L-tryptophan + B. pumilus has the potential for use in crops due to its compelling water retention, high viability in storage at room temperature, and high auxin production, which provides commercial advantages.


Assuntos
Bacillus pumilus , Ácidos Indolacéticos , Microesferas , Alginatos , Amido , Água
2.
Carbohydr Polym ; 332: 121924, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431399

RESUMO

Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.


Assuntos
Quitosana , Quitosana/química , Quitina/química , Frutos do Mar , Polímeros
3.
Carbohydr Polym ; 299: 120196, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876809

RESUMO

Chitinous materials (chitin and its derivatives) are obtained from renewable sources, mainly shellfish waste, having a great potential for the development of bioproducts as alternatives to synthetic agrochemicals. Recent studies have provided evidence that the use of these biopolymers can help control postharvest diseases, increase the content of nutrients available to plants, and elicit positive metabolic changes that lead to higher plant resistance against pathogens. However, agrochemicals are still widely and intensively used in agriculture. This perspective addresses the gap in knowledge and innovation to make bioproducts based on chitinous materials more competitive in the market. It also provides the readers with background to understand why these products are scarcely used and the aspects that need to be considered to increase their use. Finally, information on the development and commercialization of agricultural bioproducts containing chitin or its derivatives in the Chilean market is also provided.


Assuntos
Agricultura , Quitina , Biopolímeros , Agroquímicos , Nutrientes
5.
Front Biosci (Schol Ed) ; 14(2): 16, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730441

RESUMO

Melissa officinalis L. is a plant of the Lamiaceae family known in numerous countries for its medicinal activities. This plant has been used since ancient times to treat different disorders, including gastrointestinal, cardiovascular, neurological, psychological conditions. M. officinalis contains several phytochemicals such as phenolic acids, flavonoids, terpenoids, and many others at the basis of its pharmacological activities. Indeed, the plant can have antioxidant, anti-inflammatory, antispasmodic, antimicrobial, neuroprotective, nephroprotective, antinociceptive effects. Given its consolidated use, M. officinalis has also been experimented with clinical settings, demonstrating interesting properties against different human diseases, such as anxiety, sleeping difficulties, palpitation, hypertension, depression, dementia, infantile colic, bruxism, metabolic problems, Alzheimer's disease, and sexual disorders. As for any natural compound, drug, or plant extract, also M. officinalis can have adverse effects, even though the reported events are very rare and the plant can be considered substantially safe. This review has been prepared with a specific research strategy, interrogating different databases with the keyword M. officinalis. Moreover, this work analyzes the properties of this plant updating currently available literature, with a special emphasis on human studies.


Assuntos
Melissa , Antioxidantes , Ansiedade/tratamento farmacológico , Flavonoides , Humanos , Melissa/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
Plants (Basel) ; 11(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214870

RESUMO

The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil-plant system. Specifically, we proposed to explore changes in soil microbiological activity, the growth and yield parameters of strawberry plants, and to evaluate the accumulation of these pollutants in the soil and root system. Plants were planted in clay pots under greenhouse conditions. The experiment was set up as a completely randomized design, with four treatments (Control; MPs; Cd; and Cd + MPs) and five replicates. The results showed that MPs and/or Cd affected plant growth, plant biomass, the number of fruits, root characteristics, dehydrogenase activity, acid phosphatase, and microbial biomass, and increased the accumulation of Cd in the roots and soil. The increased bioavailability of Cd, due to the presence of microplastics, could explain the observed negative effects on soil properties and the performance of strawberry plants.

7.
Crit Rev Food Sci Nutr ; 62(16): 4449-4464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33491467

RESUMO

Flavonoids are common in the plant kingdom and many of them have shown a wide spectrum of bioactive properties. Hesperetin (Hst), the aglycone form of hesperidin, is a great example, and is the most abundant flavonoid found in Citrus plants. This review aims to provide an overview on the in vitro, in vivo and clinical studies reporting the Hst pharmacological effects and to discuss the bioavailability-related issues. Preclinical studies have shown promising effects on cancer, cardiovascular diseases, carbohydrate dysregulation, bone health, and other pathologies. Clinical studies have supported the Hst promissory effects as cardioprotective and neuroprotective agent. However, further well-designed clinical trials are needed to address the other Hst effects observed in preclinical trials, as well as to a more in-depth understanding of its safety profile.


Assuntos
Citrus , Hesperidina , Antioxidantes/farmacologia , Disponibilidade Biológica , Flavonoides , Hesperidina/farmacologia , Hesperidina/uso terapêutico
8.
Environ Sci Pollut Res Int ; 29(6): 7997-8011, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34825330

RESUMO

Microplastics (MPs) correspond to plastics between 0.1 µm and 5 mm in diameter, and these can be intentionally manufactured to be microscopic or generated from the fragmentation of larger plastics. Currently, MP contamination is a complicated subject due to its accumulation in the environment. They are a novel surface and a source of nutrients in soils because MPs can serve as a substrate for the colonization of microorganisms. Its presence in soil triggers physical (stability of aggregates, soil bulk density, and water dynamics), chemical (nutrients availability, organic matter, and pH), and biological changes (microbial activity and soil fauna). All these changes alter organic matter degradation and biogeochemical cycles such as the nitrogen (N) cycle, which is a key predictor of ecological stability and management in the terrestrial ecosystem. This review aims to explore how MPs affect the N cycle in the soil, the techniques to detect it in soil, and their effects on the physicochemical and biological parameters, emphasizing the impact on the main bacterial groups, genes, and enzymes associated with the different stages of the N cycle.


Assuntos
Microplásticos , Solo , Ecossistema , Ciclo do Nitrogênio , Plásticos
9.
Front Microbiol ; 13: 1062414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741893

RESUMO

Introduction: Plants interact with plant growth-promoting bacteria (PGPB), especially under stress condition in natural and agricultural systems. Although a potentially beneficial microbiome has been found associated to plants from alpine systems, this plant- PGPB interaction has been scarcely studied. Nevados de Chillán Complex hold one of the southernmost xerophytic formations in Chile. Plant species living there have to cope with drought and extreme temperatures during the growing season period, microclimatic conditions that become harsher on equatorial than polar slopes, and where the interaction with PGPB could be key for plant survival. Our goal was to study the abundance and activity of different PGPB associated to two abundant plant species of Andean xerophytic formations on contrasting slopes. Methods: Twenty individuals of Berberis empetrifolia and Azorella prolifera shrubs were selected growing on a north and south slope nearby Las Fumarolas, at 2,050 m elevation. On each slope, microclimate based on temperature and moisture conditions were monitored throughout the growing period (oct. - apr.). Chemical properties of the soil under plant species canopies were also characterized. Bacterial abundance was measured as Log CFU g-1 from soil samples collected from each individual and slope. Then, the most abundant bacterial colonies were selected, and different hormonal (indoleacetic acid) and enzymatic (nitrogenase, phosphatase, ACC-deaminase) mechanisms that promote plant growth were assessed and measured. Results and Discussion: Extreme temperatures were observed in the north facing slope, recording the hottest days (41 vs. 36°C) and coldest nights (-9.9 vs. 6.6°C). Moreover, air and soil moisture were lower on north than on south slope, especially late in the growing season. We found that bacterial abundance was higher in soils on north than on south slope but only under B. empetrifolia canopy. Moreover, the activity of plant growth-promoting mechanisms varied between slopes, being on average higher on north than on south slope, but with plant species-dependent trends. Our work showed how the environmental heterogeneity at microscale in alpine systems (slope and plant species identity) underlies variations in the abundance and plant growth promoting activity of the microorganisms present under the plant canopy of the Andean xerophytic formations and highlight the importance of PGPB from harsh systems as biotechnological tools for restoration.

10.
Antioxidants (Basel) ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829700

RESUMO

Calafate is a berry rich in anthocyanins that presents higher content of polyphenols than other fruits. Its compounds have been described previously, however, the potential thereof in preventing and treating degenerative disorders has not yet been studied. Due to its astringency, the consumption of this berry in its natural state is limited. To profit from the aforementioned properties and reduce palatability issues, calafate berry extracts were microencapsulated by spray drying, a rapid, cost-effective and scalable process, and were then compared with freeze drying as a control. The stability of its contents and its in-vitro potential, with respect to AChE activity and neuroprotection, were measured from the obtained microcapsules, resulting from temperature treatments and different encapsulant contents. The results indicated that the spray-dried powders were stable, despite high temperatures, and their encapsulation exhibited nearly 50% efficiency. The highest quantity of polyphenols and 3-O-glycosylated anthocyanins was obtained from encapsulation with 20% maltodextrin, at 120 °C. Temperature did not affect the microcapsules' biological action, as demonstrated by their antioxidant activities. The prevention of Aß peptide cytotoxicity in PC12 cells (20%) revealed that encapsulated calafate can confer neuroprotection. We conclude that spray-drying is an appropriate technique for scaling-up and producing new value-added calafate formulations with anti-neurodegenerative effects and vivid colors.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34221094

RESUMO

Wogonin is a flavonoid found in different plants such as roots of Scutellaria baicalensis Georgi distributed mainly in Asia and Europe. Dried root extracts of S. baicalensis with high content of wogonin, popularly known as "Huang-Qin" or Chinese or baical skullcap, have been used for long time in traditional Chinese medicine. Several health benefits are attributed to wogonin and derivatives showing anti-inflammatory, antiviral, anticancer, and antioxidant effects and more recently antineurodegenerative properties. Preclinical pharmacological activities of wogonin against diverse types of cancer such as breast, colorectal, and human gastric cancer will be presented in this review. In addition, studies on oxidative stress and bioavailability of wogonin will be discussed together with antineurodegenerative potential with special focus on Alzheimer's disease. Outcomes extracted from the last preclinical studies related to therapeutic applications of wogonin will be commented and updated in this review. The scientific evidence collected in this review aims to encourage transfer of the preclinical evidence of wogonin to new clinical studies.

12.
Oxid Med Cell Longev ; 2021: 5900422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257813

RESUMO

The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.


Assuntos
Alimento Funcional/normas , Peganum/química , Humanos
13.
Foods ; 10(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478067

RESUMO

Calafate (Berberis microphylla G. Forst) is a wild bush plant widely distributed in the south of Argentina and Chile. Their blue colored fruits present particular flavor and health benefits attributed to high polyphenol contents biosynthesized by the plant under stress. Studies about correlation of abiotic conditions with anthocyanin profiles and physicochemical features of calafate beneath wild origin environment are not described yet. Hence, this research aimed to evaluate the physicochemical changes, antioxidant activity and anthocyanin content of calafate fruit in relationship to UV solar radiation (W.m-2) and air temperature (°C) environment condition during three consecutive years (2017, 2018, 2019). Variations in fruit anthocyanins were determined by comparison between high performance liquid chromatography (HPLC-DAD-ESI)/MSn and CIEL*a*b* colors parameters. Correlations were analyzed by principal component analysis (PCA). Radiation was negatively correlated with fruit size and weight. Physicochemical aspects such as pH, soluble solids, color, total anthocyanins, flavanols and other phenolic compounds were positively correlated with temperature changes. The quantities of monomeric anthocyanins were dependent on both low temperature and global radiation (reaching 20.01 mg g-1 FW in calafate fruit). These results constitute a valuable resource to understand the structural and physiological plasticity of calafate in facing climate changes for future domestication research as well as for agri-food industrial application.

14.
Environ Sci Pollut Res Int ; 21(12): 7403-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24584643

RESUMO

A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM + 0% COW, AM + 1% COW, and AM + 3% COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60%, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.


Assuntos
Biodegradação Ambiental , Cupressaceae/crescimento & desenvolvimento , Micorrizas/fisiologia , Olea , Microbiologia do Solo , Biomassa , Metais Pesados/análise , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Poluentes do Solo/análise
15.
J Environ Manage ; 134: 1-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463051

RESUMO

The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium + SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp + SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis + SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions.


Assuntos
Inoculantes Agrícolas , Agricultura/métodos , Bacillus , Beta vulgaris/crescimento & desenvolvimento , Enterobacter , Microbiologia do Solo , Beta vulgaris/microbiologia , Biomassa , Lavandula/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Rizosfera , Solo/química
16.
Sci Total Environ ; 466-467: 67-73, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23895777

RESUMO

The reestablishment of autochthonous shrubs species is an essential strategy for recovering degraded soils under semiarid Mediterranean areas. A field experiment was carried out to assess the effectiveness of an immobilized microbial inoculant (Azospirillum brasilense and Pantoea dispersa) and the addition of organic olive residue (alperujo), for plant growth promotion of Cistus albidus L. and enhancement of soil properties. Sixteen months after planting, the microbial inoculant and organic residue combined treatment was the most effective for stimulating the root dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increasing the shoot dry weight of plants (by 106% with respect to control plants). Available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than the non-amended soil. Total C, total organic C and microbial biomass C content and enzyme activities (dehydrogenase, urease and protease) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue combined, but not by the microbial inoculation and organic residue applied independently. The combined treatment, involving microbial inoculant and the addition of the organic residue, had an additive effect improving the biochemical and microbiological quality of the soil.


Assuntos
Azospirillum brasilense/metabolismo , Cistus/fisiologia , Recuperação e Remediação Ambiental/métodos , Olea/química , Pantoea/metabolismo , Microbiologia do Solo , Silicatos de Alumínio/química , Biodegradação Ambiental , Cistus/crescimento & desenvolvimento , Cistus/microbiologia , Argila , Rizosfera , Solo/química , Espanha
17.
J Microencapsul ; 29(6): 532-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22372947

RESUMO

This work deals with optimising the cell survival of rhizobacteria encapsulated in alginate beads filled with starch. Immobilisation of rhizobacteria was done by dripping alginate-starch solution mixed with rhizobacteria into a calcium solution. Beads were analysed based on matrix formulation, bacteria growth phase, osmoprotectants and nature of calcium solution. Maximum cell recovery was obtained on Raoultella terrigena grown in medium supplemented with trehalose and calcium gluconate as gelling agent. Furthermore, dried beads containing Azospirillum brasilense presented 76% of viable cells after one year of storage. The survival of rhizobacteria during the bioencapsulation process can be improved by incorporating starch on beads composition, varying the growth phase of cells and using trehalose in growth culture medium. This work provides a selection of appropriate methods to improve the surviving rate of encapsulated cells during their production and long-term storage (∼1 year at 4°C).


Assuntos
Alginatos/química , Azospirillum brasilense/crescimento & desenvolvimento , Preservação Biológica/métodos , Rhizobiaceae/crescimento & desenvolvimento , Amido/química , Azospirillum brasilense/citologia , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Rhizobiaceae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA