Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 172(3): 975-82, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24140353

RESUMO

The sustained and localized delivery of monoclonal antibodies has become highly relevant, because of the increasing number of investigated local delivery applications in recent years. As the local delivery of antibodies is associated with high technological hurdles, very few successful approaches have been reported in the literature so far. Alginate-based delivery systems were previously described as promising sustained release formulations for monoclonal antibodies (mAbs). In order to further investigate their applicability, a single-dose animal study was conducted to compare the biocompatibility, the pharmacokinetics and the bioavailability of a human monoclonal antibody liquid formulation with two alginate-based sustained delivery systems after subcutaneous administration in rats. 28 days after injection, the depot systems were still found in the subcutis of the animals. A calcium cross-linked alginate formulation, which was injected as a hydrogel, was present as multiple compartments separated by subcutaneous tissue. An in situ forming alginate formulation was recovered as a single compact and cohesive structure. It can be assumed that the multiple compartments of the hydrogel formulation led to almost identical pharmacokinetic profiles for all tested animals, whereas the compact nature of the in situ forming system resulted in large interindividual variations in pharmacokinetics. As compared to the liquid formulation the hydrogel formulations led to lower mAb serum levels, and the in situ forming system to a shift in the time to reach the maximum mAb serum concentration (Tmax) from 2 to 4 days. Importantly, it was shown that after 28 days only marginal amounts of residual mAb were present in the alginate matrix and in the tissue at the injection site indicating nearly complete release. In line with this finding, systemic drug bioavailability was not affected by using the controlled release systems. This study successfully demonstrates the suitability and underlines the potential of polyanionic systems for local and controlled mAb delivery.


Assuntos
Alginatos/química , Anticorpos Monoclonais/administração & dosagem , Preparações de Ação Retardada/química , Imunoglobulina G/administração & dosagem , Animais , Anticorpos Monoclonais/farmacocinética , Disponibilidade Biológica , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Imunoglobulina G/análise , Injeções Subcutâneas , Masculino , Ratos , Ratos Wistar
2.
J Pharm Sci ; 99(10): 4390-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20665506

RESUMO

Poly(ethyleneglycol) 500 dimethylether (PEG500DME) was tested as a novel solvent for the manufacture of an injectable in situ forming depot (ISFD) containing poly(D,L-lactide-co-glycolide) (PLGA). The sustained release of pasireotide from the ISFD was evaluated in vitro and in vivo. Furthermore, the local tolerability of the delivery system using PEG500DME was investigated in subcutaneous (s.c.) tissue over 48 days. A flow-through cell was used to determine the in vitro drug release from the ISFD in comparison to a peptide suspension without polymer. The biocompatibility as well as the pharmacokinetic profile of the ISFD was investigated in rabbits. A prolonged peptide release over at least 48 days with an initial burst lower than 1% was observed in vitro for the ISFD compared to the suspension without polymer. A similar tissue response as it was observed for other common PLGA delivery systems was found upon histopathological examination of tissue from the administration site in rabbits. A sustained release of at least 48 days in vivo confirmed the in vitro observation including the low initial plasma concentration levels. Two ISFDs with different peptide loads were used to correlate the in vitro and in vivo data (IVIVC). Overall, the functionality of the ISFD containing PEG500DME as a novel solvent was demonstrated in vitro and in vivo. In addition, the local tolerability of the system confirmed the biocompatibility of PEG500DME in parenteral depots.


Assuntos
Materiais Biocompatíveis , Peptídeos/administração & dosagem , Animais , Cromatografia Líquida de Alta Pressão , Tamanho da Partícula , Peptídeos/farmacocinética , Coelhos , Espectrofotometria Ultravioleta
3.
Pharm Res ; 26(12): 2568-77, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19795192

RESUMO

PURPOSE: Poly(D,L-lactide-co-glycolide) (PLGA) solutions in poly(ethyleneglycol)600 (PEG600), N-methyl-2-pyrrolidone (NMP) and poly(ethyleneglycol)500 dimethylether (PEG500DME) as a novel solvent, were investigated as suitable for use in injectable in situ forming depots (ISFD). METHODS: The hemolytic potential of the solvents was investigated. Viscosimetry was used to determine rheological properties of solvents and PLGA solutions. DSC was used to evaluate the stability of the PLGA solutions through investigation of the melting behavior of semicrystalline PEGs which depended on tempering and glass transition temperature of the PLGA. Phase separation was studied to determine ternary phase diagrams. In vitro release kinetics of the solvents and the surrogate methylene blue were investigated. RESULTS: Significantly less hemolysis was observed for PEG500DME compared to PEG600 and NMP. Newtonian fluid properties were found for all polymer solutions. A melting point depression of the solvents was detected in presence of PLGA. The duration of tempering of the polymer solutions showed no impact on their melting behavior. The initial in vitro release of methylene blue was according to the solvent diffusion kinetics. CONCLUSIONS: Low hemolytic potential, suitable viscosity for injection, stability of PLGA solutions in PEG500DME and the correlation between phase separation and in vitro release confirmed the potential of PEG500DME as a promising solvent for ISFD.


Assuntos
Éteres/química , Polietilenoglicóis/química , Solventes/química , Doadores de Sangue , Estabilidade de Medicamentos , Éteres/farmacologia , Feminino , Hemólise/efeitos dos fármacos , Humanos , Masculino , Polietilenoglicóis/farmacologia , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Solventes/farmacologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA