Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12239, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806565

RESUMO

Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.

2.
Nat Commun ; 14(1): 4009, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419912

RESUMO

Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.


Assuntos
Hidrogênio , Prótons , Lasers , Aceleradores de Partículas , Aceleração
3.
Sci Adv ; 8(35): eabo0617, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054354

RESUMO

Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H2O systems, respectively. Here, we investigate a stoichiometric mixture of C and H2O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets' magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.

4.
Sci Rep ; 12(1): 7287, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508489

RESUMO

Due to the non-linear nature of relativistic laser induced plasma processes, the development of laser-plasma accelerators requires precise numerical modeling. Especially high intensity laser-solid interactions are sensitive to the temporal laser rising edge and the predictive capability of simulations suffers from incomplete information on the plasma state at the onset of the relativistic interaction. Experimental diagnostics utilizing ultra-fast optical backlighters can help to ease this challenge by providing temporally resolved inside into the plasma density evolution. We present the successful implementation of an off-harmonic optical probe laser setup to investigate the interaction of a high-intensity laser at [Formula: see text] peak intensity with a solid-density cylindrical cryogenic hydrogen jet target of [Formula: see text] diameter as a target test bed. The temporal synchronization of pump and probe laser, spectral filtering and spectrally resolved data of the parasitic plasma self-emission are discussed. The probing technique mitigates detector saturation by self-emission and allowed to record a temporal scan of shadowgraphy data revealing details of the target ionization and expansion dynamics that were so far not accessible for the given laser intensity. Plasma expansion speeds of up to [Formula: see text] followed by full target transparency at [Formula: see text] after the high intensity laser peak are observed. A three dimensional particle-in-cell simulation initiated with the diagnosed target pre-expansion at [Formula: see text] and post processed by ray tracing simulations supports the experimental observations and demonstrates the capability of time resolved optical diagnostics to provide quantitative input and feedback to the numerical treatment within the time frame of the relativistic laser-plasma interaction.

5.
J Vis Exp ; (159)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449743

RESUMO

This protocol presents a detailed procedure for the operation of continuous, micron-sized cryogenic cylindrical and planar liquid jets. When operated as described here, the jet exhibits high laminarity and stability for centimeters. Successful operation of a cryogenic liquid jet in the Rayleigh regime requires a basic understanding of fluid dynamics and thermodynamics at cryogenic temperatures. Theoretical calculations and typical empirical values are provided as a guide to design a comparable system. This report identifies the importance of both cleanliness during cryogenic source assembly and stability of the cryogenic source temperature once liquefied. The system can be used for high repetition rate laser-driven proton acceleration, with an envisioned application in proton therapy. Other applications include laboratory astrophysics, materials science, and next-generation particle accelerators.


Assuntos
Hidrogênio/química , Tecnologia/instrumentação , Temperatura Baixa , Termodinâmica
6.
Rev Sci Instrum ; 89(10): 10K105, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399803

RESUMO

A cryogenic microjet system has been used for delivering micron-scale continuous liquid hydrogen targets for laser-plasma experiments. This technique has been extended to higher-Z, higher boiling-point gases, including argon and methane. High-resolution shadowgraphy has been used to characterize the jet's morphology and pointing stability. A split and delay illumination source has also been developed for direct measurement of jet speeds without relying on assumptions of fluid flow conditions. Under typical conditions, the argon jets freeze solid due to evaporative cooling, but the methane jets remain liquid and break up to a droplet stream. A piezo driver is used to ensure the droplets are of uniform size. This jet has enabled the investigation of methane in planetary core conditions with high-rep-rate laser heating and x-ray laser probing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA