Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1974): 20212540, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506220

RESUMO

Body size mediates life history, physiology and inter- and intra-specific interactions. Within species, sexes frequently differ in size, reflecting divergent selective pressures and/or constraints. Both sexual selection and differences in environmentally mediated reproductive constraints can drive sexual size dimorphism, but empirically testing causes of dimorphism is challenging. Manakins (Pipridae), a family of Neotropical birds comprising approximately 50 species, exhibit a broad range of size dimorphism from male- to female-biased and are distributed across gradients of precipitation and elevation. Males perform courtship displays ranging from simple hops to complex aerobatic manoeuvres. We tested associations between sexual size dimorphism and (a) agility and (b) environment, analysing morphological, behavioural and environmental data for 22 manakin species in a phylogenetic framework. Sexual dimorphism in mass was most strongly related to agility, with males being lighter than females in species performing more aerial display behaviours. However, wing and tarsus length dimorphism were more strongly associated with environmental variables, suggesting that different sources of selection act on different aspects of body size. These results highlight the strength of sexual selection in shaping morphology-even atypical patterns of dimorphism-while demonstrating the importance of constraints and ecological consequences of body size evolution.


Assuntos
Dança , Passeriformes , Animais , Tamanho Corporal , Feminino , Masculino , Filogenia , Caracteres Sexuais
2.
Am Nat ; 197(5): 624, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33908833
3.
Am Nat ; 196(6): E160-E166, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33211562

RESUMO

AbstractAre biotic interactions stronger in the tropics? Here, we investigate nest predation in birds, a canonical example of a strong tropical biotic interaction. Counter to expectations, daily rates of nest predation vary minimally with latitude. However, life-history traits that influence nest predation have diverged between latitudes. For example, tropical species have evolved a longer average nesting period, which is associated with reduced rates of nest attendance by parents. Daily nest mortality declines with nesting period length within regions, but tropical species have a higher intercept. Consequently, for the same nesting period length, tropical species experience higher daily nest predation rates than temperate species. The implication of this analysis is that the evolved difference in nesting period length between latitudes produces a flatter latitudinal gradient in daily nest predation than would otherwise be predicted. We propose that adaptation may frequently dampen geographic patterns in interaction rates.


Assuntos
Aves/fisiologia , Geografia , Comportamento de Nidação , Comportamento Predatório , América , Animais , Clima Tropical
4.
Ecol Lett ; 23(10): 1537-1549, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32696563

RESUMO

Tropical birds are purported to be longer lived than their temperate counterparts, but it has not been shown whether avian survival rates covary with latitude worldwide. Here, we perform a global-scale meta-analysis of 949 estimates from 204 studies of avian survival and demonstrate that a latitudinal survival gradient exists in the northern hemisphere, is dampened or absent for southern hemisphere species, and that differences between passerines and nonpasserines largely drive these trends. We also show that while extrinsic factors related to climate were poor predictors of apparent survival compared to latitude alone, the relationship between apparent survival and latitude is strongly mediated by intrinsic traits - large-bodied species and species with smaller clutch size had the highest apparent survival. Our findings reveal that differences among intrinsic traits and whether species were passerines or nonpasserines surpass latitude and its underlying climatic factors in explaining global patterns of apparent avian survival.


Assuntos
Clima , Tamanho da Ninhada
5.
Proc Natl Acad Sci U S A ; 115(47): 11982-11987, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30373825

RESUMO

Montane species worldwide are shifting upslope in response to recent temperature increases. These upslope shifts are predicted to lead to mountaintop extinctions of species that live only near mountain summits, but empirical examples of populations that have disappeared are sparse. We show that recent warming constitutes an "escalator to extinction" for birds on a remote Peruvian mountain-high-elevation species have declined in both range size and abundance, and several previously common mountaintop residents have disappeared from the local community. Our findings support projections that warming will likely drive widespread extirpations and extinctions of high-elevation taxa in the tropical Andes. Such climate change-driven mountaintop extirpations may be more likely in the tropics, where temperature seems to exert a stronger control on species' range limits than in the temperate zone. In contrast, we show that lowland bird species at our study site are expanding in range size as they shift their upper limits upslope and may thus benefit from climate change.


Assuntos
Distribuição Animal/fisiologia , Aves/fisiologia , Dinâmica Populacional/tendências , Altitude , Migração Animal/fisiologia , Animais , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Extinção Biológica , Previsões , Comportamento de Retorno ao Território Vital , Peru , Temperatura , Clima Tropical
6.
Biodivers Data J ; (6): e22241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674936

RESUMO

BACKGROUND: This study establishes an altiudinal gradient, spanning from the highland Andes (2400 m) to lowland Amazon, as a productive region for the study of bird pollination in Southeastern Peru. The 'Manú Gradient' has a rich history of ornithological research, the published data and resources from which lay the groundwork for analyses of plant-bird interactions. In this preliminary expedition we documented 44 plants exhibting aspects of the bird pollination syndrome, and made field observations of hummingbird visits at three sites spanning the Manú Gradient: 2800 m (Wayqecha), 1400 m (San Pedro), and 400 m (Pantiacolla). Some of the documented plant taxa are underrepresented in the bird pollination literature and could be promising avenues for future analyses of their pollination biology. The Manú Gradient is currently the focus of a concerted, international effort to describe and study the birds in the region; we propose that this region of Southeastern Peru is a productive and perhaps underestimated system to gain insight into the ecology and evolution of bird pollination. NEW INFORMATION: Observations were made on 11, 19, and 14 putatively bird pollinated plant species found at the high-, mid- and low-elevation sites along the gradient, respectively. Hummingbirds visited 18 of these plant species, with some plant species being visited by multiple hummingbird species or the same hummingbird species on differing occasions. Morphometric data is presented for putatively bird-pollinated plants, along with bill measurements from hummingbirds captured at each of three sites. Voucher specimens from this study are deposited in the herbaria of the Universidad Nacional de Agraria de La Molina (MOL), Peru and the University of British Columbia (UBC), Canada. The specimens collected represent a 'snapshot' of the diversity of bird-pollinated flora as observed over 10 day sampling windows (per site) during the breeding season for hummingbirds of Manú .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA