Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3481, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859481

RESUMO

Midlife hypertension is an important risk factor for cognitive impairment and dementia, including Alzheimer's disease. We investigated the effects of long-term treatment with two classes of antihypertensive drugs to determine whether diverging mechanisms of blood pressure lowering impact the brain differently. Spontaneously hypertensive rats (SHR) were either left untreated or treated with a calcium channel blocker (amlodipine) or beta blocker (atenolol) until one year of age. The normotensive Wistar Kyoto rat (WKY) was used as a reference group. Both drugs lowered blood pressure equally, while only atenolol decreased heart rate. Cerebrovascular resistance was increased in SHR, which was prevented by amlodipine but not atenolol. SHR showed a larger carotid artery diameter with impaired pulsatility, which was prevented by atenolol. Cerebral arteries demonstrated inward remodelling, stiffening and endothelial dysfunction in SHR. Both treatments similarly improved these parameters. MRI revealed that SHR have smaller brains with enlarged ventricles. In addition, neurofilament light levels were increased in cerebrospinal fluid of SHR. However, neither treatment affected these parameters. In conclusion, amlodipine and atenolol both lower blood pressure, but elicit a different hemodynamic profile. Both medications improve cerebral artery structure and function, but neither drug prevented indices of brain damage in this model of hypertension.


Assuntos
Hipertensão , Hipotensão , Ratos , Animais , Anti-Hipertensivos , Ratos Endogâmicos SHR , Atenolol , Anlodipino , Ratos Endogâmicos WKY , Artéria Carótida Primitiva
2.
Microbiol Spectr ; 10(1): e0127121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171025

RESUMO

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.


Assuntos
COVID-19/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Pulmão/metabolismo , Nucleocapsídeo/análise , SARS-CoV-2 , Adolescente , Idoso , Animais , COVID-19/patologia , Pré-Escolar , Chlorocebus aethiops , Surtos de Doenças , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Pulmão/citologia , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Nucleocapsídeo/metabolismo , Coelhos , SARS-CoV-2/ultraestrutura , Células Vero/virologia
3.
Atherosclerosis ; 339: 35-45, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847419

RESUMO

BACKGROUND AND AIMS: The endothelium plays a major role in atherosclerosis, yet the endothelial plaque surface is a largely uncharted territory. Here we hypothesize that atherosclerosis-driven remodeling of the endothelium is a dynamic process, involving both damaging and regenerative mechanisms. METHODS: Using scanning electron microscopy (SEM) and immuno-SEM, we studied endothelial junction ultrastructure, endothelial openings and immune cell-endothelium interactions in eight apoe-/- mice and two human carotid plaques. RESULTS: The surface of early mouse plaques (n = 11) displayed a broad range of morphological alterations, including junctional disruptions and large transcellular endothelial pores with the average diameter between 0.6 and 3 µm. The shoulder region of advanced atherosclerotic lesions (n = 7) had a more aggravated morphology with 8 µm-size paracellular openings at two-fold higher density. In contrast, the central apical surface of advanced plaques, i.e., the plaque body (n = 7), displayed endothelial normalization, as shown by a significantly higher frequency of intact endothelial junctions and a lower incidence of paracellular pores. This normalized endothelial phenotype correlated with low immune cell density (only 5 cells/mm2). The human carotid plaque surface (n = 2) displayed both well-organized and disrupted endothelium with similar features as described above. In addition, they were accompanied by extensive thrombotic areas. CONCLUSIONS: Our study unveils the spectrum of endothelial abnormalities associated with the development of atherosclerosis. These were highly abundant in early lesions and in the shoulder region of advanced plaques, while normalized at the advanced plaque's body. Similar endothelial features were observed in human atherosclerotic plaques, underlining the versatility of endothelial transformations in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Artérias Carótidas , Endotélio , Camundongos , Microscopia Eletrônica de Varredura
4.
Front Microbiol ; 9: 2034, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233521

RESUMO

Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA