Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1253659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817770

RESUMO

Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.

2.
J Anat ; 240(1): 172-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34355792

RESUMO

Brachial plexus injury (BPI) occurs when the brachial plexus is compressed, stretched, or avulsed. Although rodents are commonly used to study BPI, these models poorly mimic human BPI due to the discrepancy in size. The objective of this study was to compare the brachial plexus between human and Wisconsin Miniature SwineTM (WMSTM ), which are approximately the weight of an average human (68-91 kg), to determine if swine would be a suitable model for studying BPI mechanisms and treatments. To analyze the gross anatomy, WMS brachial plexuses were dissected both anteriorly and posteriorly. For histological analysis, sections from various nerves of human and WMS brachial plexuses were fixed in 2.5% glutaraldehyde, and postfixed with 2% osmium tetroxide. Subsequently paraffin sections were counter-stained with Masson's Trichrome. Gross anatomy revealed that the separation into three trunks and three cords is significantly less developed in the swine than in human. In swine, it takes the form of upper, middle, and lower systems with ventral and dorsal components. Histological evaluation of selected nerves revealed differences in nerve trunk diameters and the number of myelinated axons in the two species. The WMS had significantly fewer myelinated axons than humans in median (p = 0.0049), ulnar (p = 0.0002), and musculocutaneous nerves (p = 0.0454). The higher number of myelinated axons in these nerves for humans is expected because there is a high demand of fine motor and sensory functions in the human hand. Due to the stronger shoulder girdle muscles in WMS, the WMS suprascapular and axillary nerves were larger than in human. Overall, the WMS brachial plexus is similar in size and origin to human making them a very good model to study BPI. Future studies analyzing the effects of BPI in WMS should be conducted.


Assuntos
Plexo Braquial , Animais , Plexo Braquial/anatomia & histologia , Mãos , Humanos , Ombro , Suínos , Porco Miniatura , Extremidade Superior
3.
Front Genet ; 12: 721045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630515

RESUMO

Genome editing in pigs has been made efficient, practical, and economically viable by the CRISPR/Cas9 platform, representing a promising new era in translational modeling of human disease for research and preclinical development of therapies and devices. Porcine embryo microinjection provides a universally available, efficient option over somatic-cell nuclear transfer, but requires that critical considerations be made in genotypic validation of the models that routinely go unaddressed. Accurate validation of genotypes is especially important when modeling genetic disorders, such as neurofibromatosis type 1 (NF1) that exhibits complex genotype-phenotypic relationships. NF1, an autosomal dominant disorder, is particularly hard to model as it manifests very differently across patients, and even within families, with over 3,000 disease-associated mutations of the neurofibromin 1 (NF1) gene identified. The precise nature of the mutations plays a role in the complex phenotypic presentation of the disorder that includes benign and malignant peripheral and central nervous system tumors, a variety of motor deficits and debilitating cognitive impairments and musculoskeletal, cardiovascular, and gastrointestinal disorders. NF1 can also often involve mutations in passenger genes such as TP53. In this manuscript, we describe the creation of three novel porcine models of NF1 and a model additionally harboring a mutation in TP53 by embryo microinjection of CRISPR/Cas9. We present the challenges encountered in validation of genotypes and the methodological strategies developed to counter the hurdles. We present simple options for quantifying level of mosaicism: a quantitative method (targeted amplicon sequencing) for small edits such as SNPs and indels and a semiquantitative method (competitive PCR) for large edits. Characterization of mosaicism allowed for strategic selection of founder pigs for rapid, economical expansion of genetically defined lines. We also present commonly observed unexpected DNA repair products (i.e., structural variants or cryptic alleles) that are refractory to PCR amplification and thus evade detection. We present the use of copy number variance assays to overcome hurdles in detecting cryptic alleles. The report provides a framework for genotypic validation of porcine models created by embryo microinjection and the expansion of lines in an efficient manner.

4.
Ann Neurosci ; 25(4): 210-218, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31000959

RESUMO

BACKGROUND/AIMS: Spine and spinal cord pathologies and associated neuropathic pain are among the most complex medical disorders to treat. While rodent models are widely used in spine and spinal cord research and have provided valuable insight into pathophysiological mechanisms, these models offer limited translatability. Thus, studies in rodent models have not led to the development of clinically effective therapies. More recently, swine has become a favored model for spine research because of the high congruency of the species to humans with respect to spine and spinal cord anatomy, vasculature, and immune responses. However, conventional breeds of swine commonly used in these studies present practical and translational hurdles due to their rapid growth toward weights well above those of humans. METHODS: In the current study, we evaluated the suitability of a human-sized breed of swine developed at the University of Wisconsin-Madison, the Wisconsin Miniature SwineTM (WMSTM), in the context of thoracic spine morphometry for use in research to overcome limitations of conventional swine breeds. The morphometry of thoracic vertebrae (T1-T15) of 5-6 months-old WMS was analyzed and compared to published values of human and conventional swine spines. RESULTS: The key finding of this study is that WMS spine more closely models the human spine for many of the measured vertebrae parameters, while being similar to conventional swine in respect to the other parameters. CONCLUSION: WMS provides an improvement over conventional swine for use in translational spinal cord injury studies, particularly long-term ones, because of its slower rate of growth and its maximum growth being limited to human weight and size.

5.
J Neurotrauma ; 34(3): 541-551, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27492951

RESUMO

Spinal cord injury (SCI) is a physically and psychologically devastating clinical condition. The typical treatment regimens of decompressive surgery and rehabilitation therapy still leave many patients with permanent disability. The development of new therapies and devices can be accelerated if relevant translational animal models are more effectively used in pre-clinical stages. Swine is a highly relevant model for SCI research, especially with respect to spine and spinal cord anatomy, spine vasculature, immune responses to injury, and functional assessments. Several spine injury models have recently been developed for swine and are beginning to be used to evaluate new therapies. Swine models of SCI offer tremendous advantages for efficient translation of pre-clinical discoveries and the development of new therapies and devices. Future swine models will also be enhanced by advances in gene-editing technology to further elucidate the complex pathophysiology associated with SCI and provide a means to engineer specific spinal pathologies.


Assuntos
Modelos Animais de Doenças , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Pesquisa Translacional Biomédica/tendências , Animais , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Traumatismos da Medula Espinal/metabolismo , Suínos
6.
Ann Neurosci ; 23(1): 25-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27536019

RESUMO

Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/ß-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/ß-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and ß-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, ß-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and ß-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively unchanged and constant. Chronic NP is associated with changes in the expression of MMP-2, ß-catenin and ERK. Our data suggest that the transient upregulation of phospho-ERK is involved in the initial upregulation of both ß-catenin and MMP-2 following cSCI-induced NP states.

7.
Toxicol Pathol ; 44(3): 299-314, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26839324

RESUMO

Noncommunicable diseases, including cardiovascular disease, diabetes, chronic respiratory disease, and cancer, are the leading cause of death in the world. The cost, both monetary and time, of developing therapies to prevent, treat, or manage these diseases has become unsustainable. A contributing factor is inefficient and ineffective preclinical research, in which the animal models utilized do not replicate the complex physiology that influences disease. An ideal preclinical animal model is one that responds similarly to intrinsic and extrinsic influences, providing high translatability and concordance of preclinical findings to humans. The overwhelming genetic, anatomical, physiological, and pathophysiological similarities to humans make miniature swine an ideal model for preclinical studies of human disease. Additionally, recent development of precision gene-editing tools for creation of novel genetic swine models allows the modeling of highly complex pathophysiology and comorbidities. As such, the utilization of swine models in early research allows for the evaluation of novel drug and technology efficacy while encouraging redesign and refinement before committing to clinical testing. This review highlights the appropriateness of the miniature swine for modeling complex physiologic systems, presenting it as a highly translational preclinical platform to validate efficacy and safety of therapies and devices.


Assuntos
Descoberta de Drogas , Porco Miniatura/imunologia , Pesquisa Translacional Biomédica , Animais , Equipamentos e Provisões , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA