RESUMO
Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was observed. Bioassembly of pre-differentiated micro-tissues as well as chondrocyte-laden hydrogel micro-spheres demonstrated the flexibility of the platform while supporting tissue fusion, long-term cell viability, and deposition of cartilage-specific extracellular matrix proteins. This technology provides an automated and scalable pathway for bioassembly of both simple and complex 3D tissue constructs of clinically relevant shape and size, with demonstrated capability to facilitate direct spatial organisation and hierarchical 3D assembly of micro-tissue modules, ranging from biomaterial free cell pellets to cell-laden hydrogel formulations.
Assuntos
Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Automação , Cartilagem Articular/citologia , Células Cultivadas , Condrócitos/citologia , HumanosRESUMO
This review describes the prospects of applying modular assembly techniques and strategies for fabrication of advanced tissue engineered cartilage constructs. Articular cartilage is a tissue that has important functions in preserving and enabling locomotion. However, its limited intrinsic repair capacity and lack of current long-term clinical solutions makes it a candidate for repair or regeneration via tissue engineering strategies. Key advances in biofabrication and 3D bioprinting techniques allowing the specific placement of cells and tissues enable novel strategies to be adopted with increased chances of success. In particular, modular assembly, where separate biological components such as microtissue units, cellular building blocks or spheroids are combined with structural scaffold components to create a functional whole, offers potential as a new strategy for engineering of articular cartilage. Various modular assembly or bottom-up fabrication strategies have been investigated or applied for engineering of a range of tissues and cell types, however, modular approaches to cartilage engineering have been limited thus far. The integrative nature of many current approaches to engineering of articular cartilage means optimization of separate components (such as the scaffold and cells) is challenging, resulting in strategies which are less amenable to clinical scale-up or modification. In addition, current tissue engineering strategies may not replicate the function and complex structure of native tissue. This review outlines recent developments in fabrication of cellular or tissue modules as well as scaffold design where it impacts modular biofabrication, and discusses existing modular approaches applicable to articular cartilage regeneration and repair. Modular tissue assembly approaches allow complex hybrid constructs to be fabricated with direct control over both structural and cellular organization of pre-formed tissue units. The combination of modular assembly with automated biofabrication technologies may offer solutions to the development of optimal tissue-engineered cartilage constructs.
Assuntos
Cartilagem Articular , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , HumanosRESUMO
Described here is a simple, high-throughput process to fabricate pellets with regular size and shape and the assembly of pre-cultured pellets in a controlled manner into specifically designed 3D plotted porous scaffolds. Culture of cartilage pellets is a well-established process for inducing re-differentiation in expanded chondrocytes. Commonly adopted pellet culture methods using conical tubes are inconvenient, time-consuming and space-intensive. We compared the conventional 15-mL tube pellet culture method with 96-well plate-based methods, examining two different well geometries (round- and v-bottom plates). The high-throughput production method was then used to demonstrate guided placement of pellets within a scaffold of defined pore size and geometry for the 3D assembly of tissue engineered cartilage constructs. While minor differences were observed in tissue quality and size, the chondrogenic re-differentiation capacity of human chondrocytes, as assessed by GAG/DNA, collagen type I and II immunohistochemistry and collagen type I, II and aggrecan mRNA expression, was maintained in the 96-well plate format and pellets of regular size and spheroidal shape were produced. This allowed for simple production of large numbers of reproducible tissue spheroids. Furthermore, the pellet-assembly method successfully allowed fluorescently labelled pellets to be individually visualised in 3D. During subsequent culture of 3D assembled tissue engineered constructs in vitro, pellets fused to form a coherent tissue, promoting chondrogenic differentiation and GAG accumulation.