Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6539): 259-264, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859028

RESUMO

The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.

2.
Phys Rev Lett ; 121(7): 076801, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169086

RESUMO

We investigate the magnetic field and temperature dependence of the single-electron spin lifetime in silicon quantum dots and find a lifetime of 2.8 ms at a temperature of 1.1 K. We develop a model based on spin-valley mixing and find that Johnson noise and two-phonon processes limit relaxation at low and high temperature, respectively. We also investigate the effect of temperature on charge noise and find a linear dependence up to 4 K. These results contribute to the understanding of relaxation in silicon quantum dots and are promising for qubit operation at elevated temperatures.

3.
Science ; 355(6328): 939-942, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28254938

RESUMO

Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit's nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity's fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

4.
Sci Rep ; 6: 30289, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27509823

RESUMO

The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682-686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same experimental setup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting P-values of the second experiment and of the combined Bell tests. We provide an additional analysis of the distribution of settings choices recorded during the two tests, finding that the observed distributions are consistent with uniform settings for both tests. Finally, we analytically study the effect of particular models of random number generator (RNG) imperfection on our hypothesis test. We find that the winning probability per trial in the CHSH game can be bounded knowing only the mean of the RNG bias. This implies that our experimental result is robust for any model underlying the estimated average RNG bias, for random bits produced up to 690 ns too early by the random number generator.

5.
Nature ; 526(7575): 682-6, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26503041

RESUMO

More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in 'loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.

6.
Science ; 345(6196): 532-5, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082696

RESUMO

Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing.

7.
Nature ; 502(7471): 350-4, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24132292

RESUMO

The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.

8.
Nat Commun ; 4: 1913, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23715272

RESUMO

The tunnelling of quasiparticles across Josephson junctions in superconducting quantum circuits is an intrinsic decoherence mechanism for qubit degrees of freedom. Understanding the limits imposed by quasiparticle tunnelling on qubit relaxation and dephasing is of theoretical and experimental interest, particularly as improved understanding of extrinsic mechanisms has allowed crossing the 100 microsecond mark in transmon-type charge qubits. Here, by integrating recent developments in high-fidelity qubit readout and feedback control in circuit quantum electrodynamics, we transform a state-of-the-art transmon into its own real-time charge-parity detector. We directly measure the tunnelling of quasiparticles across the single junction and isolate the contribution of this tunnelling to qubit relaxation and dephasing, without reliance on theory. The millisecond timescales measured demonstrate that quasiparticle tunnelling does not presently bottleneck transmon qubit coherence, leaving room for yet another order of magnitude increase.

9.
Phys Rev Lett ; 93(17): 177006, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15525116

RESUMO

We present a new readout method for a superconducting flux qubit, based on the measurement of the Josephson inductance of a superconducting quantum interference device that is inductively coupled to the qubit. The intrinsic flux detection efficiency and backaction are suitable for a fast and nondestructive determination of the quantum state of the qubit, as needed for readout of multiple qubits in a quantum computer. We performed spectroscopy of a flux qubit and we measured relaxation times of the order of 80 micros.

10.
Phys Med Biol ; 47(21): 3699-704, 2002 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12452556

RESUMO

We have built a relatively simple, highly efficient, terahertz (THz) emission and detection system centred around a 15 fs Ti:sapphire laser. In the system, 200 mW of laser power is focused on a 120 microm diameter spot between two silverpaint electrodes on the surface of a semi-insulating GaAs crystal, kept at a temperature near 300 K, biased with a 50 kHz, +/- 400 V square wave. Using rapid delay scanning and lock-in detection at 50 kHz, we obtain probe laser quantum-noise limited signals using a standard electro-optic detection scheme with a 1 mm thick (110) oriented ZnTe crystal. The maximum THz-induced differential signal that we observe is deltaP/P = 7 x 10(-3), corresponding to a THz peak amplitude of 95 V cm(-1). The THz average power was measured to be about 40 microW, to our knowledge the highest power reported so far generated with Ti:sapphire oscillators as a pump source. The system uses off-the-shelf electronics and requires no microfabrication techniques.


Assuntos
Arsenicais/química , Cristalização/métodos , Fenômenos Eletromagnéticos/instrumentação , Gálio/química , Lasers , Micro-Ondas , Análise Espectral/instrumentação , Cristalografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Óptica e Fotônica/instrumentação , Estimulação Luminosa/instrumentação , Estimulação Luminosa/métodos , Controle de Qualidade , Semicondutores , Sensibilidade e Especificidade , Análise Espectral/métodos , Processos Estocásticos , Telúrio/química , Transdutores , Compostos de Zinco/química
11.
Science ; 290(5492): 773-7, 2000 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-11052934

RESUMO

Microwave spectroscopy experiments have been performed on two quantum levels of a macroscopic superconducting loop with three Josephson junctions. Level repulsion of the ground state and first excited state is found where two classical persistent-current states with opposite polarity are degenerate, indicating symmetric and antisymmetric quantum superpositions of macroscopic states. The two classical states have persistent currents of 0.5 microampere and correspond to the center-of-mass motion of millions of Cooper pairs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA