Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 591(7851): 580-585, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762771

RESUMO

The prospect of building quantum circuits1,2 using advanced semiconductor manufacturing makes quantum dots an attractive platform for quantum information processing3,4. Extensive studies of various materials have led to demonstrations of two-qubit logic in gallium arsenide5, silicon6-12 and germanium13. However, interconnecting larger numbers of qubits in semiconductor devices has remained a challenge. Here we demonstrate a four-qubit quantum processor based on hole spins in germanium quantum dots. Furthermore, we define the quantum dots in a two-by-two array and obtain controllable coupling along both directions. Qubit logic is implemented all-electrically and the exchange interaction can be pulsed to freely program one-qubit, two-qubit, three-qubit and four-qubit operations, resulting in a compact and highly connected circuit. We execute a quantum logic circuit that generates a four-qubit Greenberger-Horne-Zeilinger state and we obtain coherent evolution by incorporating dynamical decoupling. These results are a step towards quantum error correction and quantum simulation using quantum dots.

2.
Nature ; 558(7709): 268-273, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899475

RESUMO

Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes1-7. Moving beyond current two-node networks8-13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

3.
Nature ; 562(7725): E2, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946170

RESUMO

Change history: In this Letter, the received date should be 20 December 2017, instead of 27 April 2018. This has been corrected online.

4.
ACS Nano ; 12(3): 2623-2633, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29474060

RESUMO

Many theoretical studies predict that DNA sequencing should be feasible by monitoring the transverse current through a graphene nanoribbon while a DNA molecule translocates through a nanopore in that ribbon. Such a readout would benefit from the special transport properties of graphene, provide ultimate spatial resolution because of the single-atom layer thickness of graphene, and facilitate high-bandwidth measurements. Previous experimental attempts to measure such transverse inplane signals were however dominated by a trivial capacitive response. Here, we explore the feasibility of the approach using a custom-made differential current amplifier that discriminates between the capacitive current signal and the resistive response in the graphene. We fabricate well-defined short and narrow (30 nm × 30 nm) nanoribbons with a 5 nm nanopore in graphene with a high-temperature scanning transmission electron microscope to retain the crystallinity and sensitivity of the graphene. We show that, indeed, resistive modulations can be observed in the graphene current due to DNA translocation through the nanopore, thus demonstrating that DNA sensing with inplane currents in graphene nanostructures is possible. The approach is however exceedingly challenging due to low yields in device fabrication connected to the complex multistep device layout.


Assuntos
DNA/análise , Grafite/química , Nanoporos , Nanoestruturas/química , Análise de Sequência de DNA/instrumentação , Condutividade Elétrica , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Movimento (Física) , Nanoporos/ultraestrutura , Nanotecnologia/instrumentação
6.
Rev Sci Instrum ; 84(5): 053108, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742533

RESUMO

We propose and develop a readout scheme for superconducting single-photon detectors based on an integrated circuit, relaxing the need for large bandwidth amplification and resulting in voltage steps proportional to the number of detected photons. We also demonstrate time gating, to filter scattered light in time and reduce dark counts. This could lead to a higher signal-to-noise ratio. The gate pulse is generated on the detection of a photon created by a spontaneous parametric down-conversion source, heralding the presence of a second photon. These two schemes could find applications within advanced multi-array imaging detection systems.

7.
Rev Sci Instrum ; 84(4): 044706, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23635219

RESUMO

We report the characterisation of printed circuit boards (PCB) metal powder filters and their influence on the effective electron temperature which is as low as 22 mK for a quantum dot in a silicon MOSFET structure in a dilution refrigerator. We investigate the attenuation behaviour (10 MHz-20 GHz) of filter made of four metal powders with a grain size below 50 µm. The room-temperature attenuation of a stainless steel powder filter is more than 80 dB at frequencies above 1.5 GHz. In all metal powder filters, the attenuation increases with temperature. Compared to classical powder filters, the design presented here is much less laborious to fabricate and specifically the copper powder PCB-filters deliver an equal or even better performance than their classical counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA