Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(3): 3998-4014, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785378

RESUMO

We present the results of our performance studies of the upgraded Cherenkov time-of-flight (ToF) detector for the AFP (ATLAS Forward Proton) project. The latest version consists of solid L-shaped fused silica bars, new customized ALD-coated micro-channel plate photomultipliers (MCP-PMTs) miniPlanacon XPM85112-S-R2D2 with an extended lifetime which operate at low gains (order of 103), and an updated construction. The improvements were aimed to increase the efficiency, the lifetime as well as the radiation hardness of the detector which has been designed to operate in high radiation areas (above 400 kGy/year). The detector was finally tested at the CERN-SPS test-beam facility (120 GeV π+ particles) in August 2021 prior to its installation at the Large Hadron Collider (LHC) at CERN. Measurements proved the detector kept its inner timing resolution of 20 ps despite the rather low gain of its photodetector and reduced optical throughput caused by inevitable changes in the detector geometry.

2.
Nano Lett ; 21(17): 7244-7251, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433259

RESUMO

The key information about any nanoscale system relates to the orientations and conformations of its parts. Unfortunately, these details are often hidden below the diffraction limit, and elaborate techniques must be used to optically probe them. Here we present imaging of the 3D rotation motion of metal nanorods, restoring the distinct nanorod orientations in the full extent of azimuthal and polar angles. The nanorods imprint their 3D orientation onto the geometric phase and space-variant polarization of the light they scatter. We manipulate the light angular momentum and generate optical vortices that create self-interference images providing the nanorods' angles via digital processing. After calibration by scanning electron microscopy, we demonstrated time-resolved 3D orientation imaging of sub-100 nm nanorods under Brownian motion (frame rate up to 500 fps). We also succeeded in imaging nanorods as nanoprobes in live-cell imaging and reconstructed their 3D rotational movement during interaction with the cell membrane (100 fps).


Assuntos
Ouro , Nanotubos , Movimento (Física)
3.
Opt Lett ; 45(16): 4468-4471, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796985

RESUMO

Measuring rough surfaces is challenging because the proven topographic methods are impaired by the adverse effects of diffuse light. In our method, the measured surface is marked by fluorescent nanobeads allowing a complete suppression of diffuse light by bandpass filtering. Light emitted by each fluorescent bead is shaped to a double-helix point spread function used for three-dimensional bead localization on the surface. This non-interferometric measurement of rough surface topography is implemented in a vibration resistant setup. The comparison of our method with vertical scanning interferometry shows that a commercial profiler is surpassed when ground glass surfaces with steep slopes are measured.

4.
Opt Express ; 28(13): 19783-19796, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672248

RESUMO

We present the results of performance studies of the upgraded optical part of the time-of-flight subdetector prototype for the AFP (ATLAS Forward Proton) detector obtained during the test campaign in a synchrotron test-beam facility with 5 GeV electrons at the DESY laboratory (Hamburg, Germany) in June 2019. The detection of the particle arrival time is based on generation of Cherenkov light in an L-shaped fused silica bar. In the previous version of the ToF, all bars were made of two pieces (radiator and light guide) glued together with a dedicated glue (Epotek 305). This solution suffers from additional radiation damage of glue. We adopted a new technique of bar production without the need of glue. The new bars have a higher optical throughput by a factor of 1.6, reduced fragility, and better geometrical precision.

5.
Langmuir ; 36(29): 8485-8493, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32506911

RESUMO

Polymer brushes not only represent emerging surface platforms for numerous bioanalytical and biological applications but also create advanced surface-tethered systems to mimic real-life biological processes. In particular, zwitterionic and nonionic polymer brushes have been intensively studied because of their extraordinary resistance to nonspecific adsorption of biomolecules (antifouling characteristics) as well as the ability to be functionalized with bioactive molecules. However, the relation between antifouling behavior in real-world biological media and structural changes of polymer brushes induced by surface preconditioning in different environments remains unexplored. In this work, we use multiple methods to study the structural properties of numerous brushes under variable ionic concentrations and determine the impact of these changes on resistance to fouling from undiluted blood plasma. We describe different mechanisms of swelling, depending on both the polymer brush coating properties and the environmental conditions that affect changes in both hydration levels and thickness. Using both fluorescent and surface plasmon resonance methods, we found that the antifouling behavior of these brushes is strongly dependent on the aforementioned structural changes. Moreover, preconditioning of the brush coatings (incubation at a variable salt concentration or drying) prior to biomolecule interaction may significantly improve the antifouling performance. These results suggest a new simple approach to improve the antifouling behavior of polymer brushes. In addition, the results herein enhance the understanding for improved design of antifouling and bioresponsive brushes employed in biosensor and biomimetic applications.

6.
Opt Express ; 27(23): 33459-33473, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878415

RESUMO

The study compares three variants of focus sensors designed for the optical topography measurement of rough surface specimens with submicron accuracy. We present a theoretical analysis of the focus sensor principles and the experimental measurements with a single point laser probe. A low coherent illumination beam was provided by a monochromatic laser source and a rotating diffuser, which reduced the speckles generated by the rough surface. The reflected beam was modulated by three specific optical elements (axicon, double wedge prism, four spherical lenses) realized by a spatial light modulator. A digital camera detected the output intensity patterns that were evaluated by the intensity centroid method. The results showed a good coincidence of the surface profiles obtained by the three sensor variants with the root-mean-square deviations below one micron. We discuss the results obtained for several specimens with various surface roughness and compare the differences between the three focus sensor variants.

7.
Opt Express ; 19(5): 4199-209, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21369249

RESUMO

Diffuse and specular characteristics of the Tyvek 1025-BL material are reported with respect to their implementation in the Geant4 Monte Carlo simulation toolkit. This toolkit incorporates the UNIFIED model. Coefficients defined by the UNIFIED model were calculated from the bidirectional reflectance distribution function (BRDF) profiles measured with a scatterometer for several angles of incidence. Results were amended with profile measurements made by a profilometer.


Assuntos
Modelos Químicos , Polímeros/química , Linguagens de Programação , Software , Simulação por Computador , Luz , Teste de Materiais , Refratometria , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA