Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 293: 110101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718529

RESUMO

Cross-species transmission of coronaviruses has been continuously posing a major challenge to public health. Pigs, as the major animal reservoirs for many zoonotic viruses, frequently mediate viral transmission to humans. This study comprehensively mapped the relationship between human and porcine coronaviruses through in-depth bioinformatics analysis. We found that human coronavirus OC43 and porcine coronavirus PHEV share a close phylogenetic relationship, evidenced by high genomic homology, similar codon usage patterns and comparable tertiary structure in spike proteins. Inoculation of infectious OC43 viruses in organoids derived from porcine small and large intestine demonstrated that porcine intestinal organoids (pIOs) are highly susceptible to human coronavirus OC43 infection and support infectious virus production. Using transmission electron microscopy, we visualized OC43 viral particles in both intracellular and extracellular compartments, and observed abnormalities of multiple organelles in infected organoid cells. Robust OC43 infections in pIOs result in a significant reduction of organoids viability and widespread cell death. This study bears essential implications for better understanding the evolutionary origin of human coronavirus OC43, and provides a proof-of-concept for using pIOs as a model to investigate cross-species transmission of human coronavirus.


Assuntos
Biologia Computacional , Infecções por Coronavirus , Coronavirus Humano OC43 , Intestinos , Organoides , Filogenia , Animais , Organoides/virologia , Suínos , Humanos , Infecções por Coronavirus/virologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética , Intestinos/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Genoma Viral
2.
Nat Microbiol ; 8(11): 2067-2079, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828248

RESUMO

Mpox virus (MPXV) primarily infects human skin to cause lesions. Currently, robust models that recapitulate skin infection by MPXV are lacking. Here we demonstrate that human induced pluripotent stem cell-derived skin organoids are susceptible to MPXV infection and support infectious virus production. Keratinocytes, the predominant cell type of the skin epithelium, effectively support MPXV infection. Using transmission electron microscopy, we visualized the four stages of intracellular virus particle assembly: crescent formation, immature virions, mature virions and wrapped virions. Transcriptional analysis showed that MPXV infection rewires the host transcriptome and triggers abundant expression of viral transcripts. Early treatment with the antiviral drug tecovirimat effectively inhibits infectious virus production and prevents host transcriptome rewiring. Delayed treatment with tecovirimat also inhibits infectious MPXV particle production, albeit to a lesser extent. This study establishes human skin organoids as a robust experimental model for studying MPXV infection, mapping virus-host interactions and testing therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mpox , Humanos , Monkeypox virus , Células-Tronco Pluripotentes Induzidas/patologia , Organoides
4.
PLoS One ; 15(6): e0235413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589655

RESUMO

Monitoring changes in the immune profile in blood samples can help identifying changes in tumor biology and therapy responsiveness over time. Immune-related gene expression profiles offer a highly reproducible method to monitor changes of the immune system. However, measuring gene expression profiles in whole blood samples can be complicated because of the high protein and enzyme abundancy that affect the stability and quality of the RNA. Peripheral blood mononuclear cells (PBMCs) are one the most commonly used source for immune cell RNA extraction, though, this method does not reflect all components of the peripheral blood. The aim of this study was to determine the differences in immune-related gene expression between RNA isolated from stabilized whole blood and RNA isolated from PBMCs. Whole blood samples from 12 pancreatic cancer patients were collected before and after chemotherapy (n = 24). Blood samples were collected in both EDTA tubes, and Tempus tubes containing an RNA stabilizer (total n = 48). PBMCs were isolated from EDTA samples using Ficoll and were snap frozen. Subsequently, immune-related gene expression was profiled using the PanCancer Immune Profiling Panel of NanoString technology. Gene expression profiles of PBMCs were compared to that of Tempus tubes using the Advanced Analysis module of nSolver software. Both types of samples provided good quality RNA and gene expression measurements. However, RNA isolated from Tempus tubes resulted in significantly higher gene counts than PBMCs; 107/730 genes were exclusively detected in Tempus samples, while under the detection limit in PBMCs. In addition, 192/730 genes showed significantly higher gene counts in Tempus samples, 157/730 genes showed higher gene counts in PBMCs. Thus, RNA isolated from whole blood stabilizing blood tubes, such as Tempus tubes, enable higher gene counts and more comprehensive measurements of gene expression profiles compared to RNA isolated from PBMCs.


Assuntos
Perfilação da Expressão Gênica/métodos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , RNA/sangue , RNA/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA