Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 9: 641147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796506

RESUMO

Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and α-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.

2.
Drug Test Anal ; 13(7): 1282-1294, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33624933

RESUMO

The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on-site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SCs) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone, and 4-chloro-alpha-pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen-printed electrodes (SPEs). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography-high-resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas chromatography-mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever-diversifying drug market.


Assuntos
Alcaloides/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Psicotrópicos/análise , Alcaloides/química , Técnicas Eletroquímicas , Cromatografia Gasosa-Espectrometria de Massas , Drogas Ilícitas/análise , Drogas Ilícitas/química , Oxirredução , Psicotrópicos/química
3.
Anal Chem ; 92(19): 13485-13492, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32786496

RESUMO

Herein, a straightforward electrochemical approach for the determination of ketamine in street samples and seizures is presented by employing screen-printed electrodes (SPE). Square wave voltammetry (SWV) is used to study the electrochemical behavior of the illicit drug, thus profiling the different oxidation states of the substance at different pHs. Besides, the oxidation pathway of ketamine on SPE is investigated for the first time with liquid chromatography-high-resolution mass spectrometry. Under the optimized conditions, the calibration curve of ketamine at buffer solution (pH 12) exhibits a sensitivity of 8.2 µA µM-1, a linear relationship between 50 and 2500 µM with excellent reproducibility (RSD = 2.2%, at 500 µM, n = 7), and a limit of detection (LOD) of 11.7 µM. Subsequently, binary mixtures of ketamine with adulterants and illicit drugs are analyzed with SWV to investigate the electrochemical fingerprint. Moreover, the profile overlapping between different substances is addressed by the introduction of an electrode pretreatment and the integration of a tailor-made script for data treatment. Finally, the approach is tested on street samples from forensic seizures. Overall, this system allows for the on-site identification of ketamine by law enforcement agents in an easy-to-use and rapid manner on cargos and seizures, thereby disrupting the distribution channel and avoiding the illicit drug reaching the end-user.


Assuntos
Técnicas Eletroquímicas , Ketamina/análise , Calibragem , Cromatografia Líquida , Eletrodos , Espectrometria de Massas , Tamanho da Partícula
4.
Anal Chem ; 91(12): 7920-7928, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117413

RESUMO

Electrochemical strategies to selectively detect heroin in street samples without the use of complicated electrode modifications were developed for the first time. For this purpose, heroin, mixing agents (adulterants, cutting agent, and impurities), and their binary mixtures were subjected to square wave voltammetry measurements at bare graphite electrodes at pH 7.0 and pH 12.0, in order to elucidate the unique electrochemical fingerprint of heroin and mixing agents as well as possible interferences or reciprocal influences. Adjusting the pH from pH 7.0 to pH 12.0 allowed a more accurate detection of heroin in the presence of most common mixing agents. Furthermore, the benefit of introducing a preconditioning step prior to running square wave voltammetry on the electrochemical fingerprint enrichment was explored. Mixtures of heroin with other drugs (cocaine, 3,4-methylenedioxymethamphetamine, and morphine) were also tested to explore the possibility of their discrimination and simultaneous detection. The feasibility of the proposed electrochemical strategies was tested on realistic heroin street samples from forensic cases, showing promising results for fast, on-site detection tools of drugs of abuse.


Assuntos
Eletroquímica/métodos , Heroína/análise , Heroína/química , Eletroquímica/instrumentação , Eletrodos , Grafite/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA