Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(4): 2491-2499, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33538579

RESUMO

The aging of microplastics in the environment changes their physicochemical properties. While this may affect their toxicity, comparative data on the effects of aged compared to pristine microplastics are scarce. One of those aging processes is the sorption of chemicals, which has mainly been studied for individual pollutants present in marine ecosystems. To investigate how the sorption of a complex mixture of freshwater pollutants affects the toxicity of microplastics, we incubated irregular polystyrene particles (≤63 µm) in either wastewater or ultrapure water. We exposed Daphnia magna to these aged microplastics and their pristine counterparts (80, 400, 2000, and 10,000 particles mL-1) over four generations using food limitation as an additional, environmentally realistic stressor. Both particle types affect the survival, reproduction, adult and neonate body lengths, and growth. An exposure to pristine microplastics results in the extinction of the third generation of daphnids. In contrast, wastewater-incubated particles induced a lower mortality. The incubation with wastewater does not change the microplastics' size, surface charge, and structure. Consistent with the literature, we assume that the adsorption of dissolved organic matter is a key aging process reducing the toxicity of microplastics. Consequently, toxicity testing using pristine microplastics may overestimate the effects of plastic particles in nature.


Assuntos
Microplásticos , Poluentes Químicos da Água , Idoso , Animais , Daphnia , Ecossistema , Humanos , Recém-Nascido , Plásticos/toxicidade , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Nat Commun ; 6: 8211, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26394541

RESUMO

The spin Seebeck effect, the generation of a spin current by a temperature gradient, has attracted great attention, but the interplay over a millimetre range along a thin ferromagnetic film as well as unintended side effects which hinder an unambiguous detection have evoked controversial discussions. Here, we investigate the inverse spin Hall voltage of a 10 nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 and NiFe2O4 with a temperature gradient in the film plane. We show characteristics typical of the spin Seebeck effect, although we do not observe the most striking features of the transverse spin Seebeck effect. Instead, we attribute the observed voltages to the longitudinal spin Seebeck effect generated by a contact tip induced parasitic out-of-plane temperature gradient, which depends on material, diameter and temperature of the tip.

3.
Phys Rev Lett ; 111(17): 176601, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206509

RESUMO

We perform a quantitative, comparative study of the spin pumping, spin Seebeck, and spin Hall magnetoresistance effects, all detected via the inverse spin Hall effect in a series of over 20 yttrium iron garnet/Pt samples. Our experimental results fully support present, exclusively spin current-based, theoretical models using a single set of plausible parameters for spin mixing conductance, spin Hall angle, and spin diffusion length. Our findings establish the purely spintronic nature of the aforementioned effects and provide a quantitative description, in particular, of the spin Seebeck effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA