Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Thromb Haemost ; 21(2): 269-275, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36700507

RESUMO

BACKGROUND: Sickle cell disease (SCD) is an inherited red blood cell disorder with a causative substitution in the beta-globin gene that encodes beta-globin in hemoglobin. Furthermore, the ensuing vasculopathy in the microvasculature involves heightened endothelial cell adhesion, inflammation, and coagulopathy, all of which contribute to vaso-occlusive crisis (VOC) and the sequelae of SCD. In particular, dysregulation of the von Willebrand factor (VWF) and a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) axis has been implicated in human SCD pathology. OBJECTIVES: To investigate the beneficial potential of treatment with recombinant ADAMTS13 (rADAMTS13) to alleviate VOC. METHODS: Pharmacologic treatment with rADAMTS13 in vitro or in vivo was performed in a humanized mouse model of SCD that was exposed to hypoxia/reoxygenation stress as a model of VOC. Then, pharmacokinetic, pharmacodynamic, and behavioral analyses were performed. RESULTS: Administration of rADAMTS13 to SCD mice dose-dependently increased plasma ADAMTS13 activity, reduced VWF activity/antigen ratios, and reduced baseline hemolysis (free hemoglobin and total bilirubin) within 24 hours. rADAMTS13 was administered in SCD mice, followed by hypoxia/reoxygenation stress, and reduced VWF activity/antigen ratios in parallel to significantly (p < .01) improved recovery during the reoxygenation phase. Consistent with the results in SCD mice, we demonstrate in a human in vitro system that treatment with rADAMTS13 counteracts the inhibitory activity of hemoglobin on the VWF/ADAMTS13-axis. CONCLUSION: Collectively, our data provide evidence that relative ADAMTS13 insufficiency in SCD mice is corrected by pharmacologic treatment with rADAMTS13 and provides an effective disease-modifying approach in a human SCD mouse model.


Assuntos
Anemia Falciforme , Doenças Vasculares , Compostos Orgânicos Voláteis , Humanos , Animais , Camundongos , Fator de von Willebrand/metabolismo , Anemia Falciforme/tratamento farmacológico , Hemólise , Proteína ADAMTS13/genética
2.
J Blood Med ; 13: 649-662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405429

RESUMO

Background: Recombinant von Willebrand factor (rVWF, vonicog alfa) is a purified VWF concentrate produced from Chinese hamster ovary cells. rVWF is not exposed to the VWF-cleaving protease ADAMTS13 and so is not subject to proteolytic degradation of large (L) and ultra-large (UL) VWF multimers by that enzyme. Purpose: To compare the structure and function of rVWF with the human plasma-derived VWF [pdVWF] concentrates Haemate P®/Humate-P®, Voncento®, Wilate®/Eqwilate®, and Wilfactin®/Willfact®; to investigate the relationship between VWF multimeric pattern and VWF:ristocetin cofactor (VWF:RCo) activity through population pharmacokinetic (PK) modeling in patients with severe von Willebrand disease (VWD) treated with rVWF. Methods: Analyses included VWF:RCo activity, VWF:collagen-binding activity, VWF:platelet glycoprotein Ib receptor binding, factor VIII (FVIII) binding capacity, and VWF-mediated platelet adhesion under flow conditions. VWF multimeric structure was determined by agarose gel electrophoresis. Population PK models describing the activity-time profile of small, medium, and L/UL multimers following intravenous administration of rVWF in patients with severe VWD were developed. Results: Findings demonstrate that rVWF contains a non-degraded VWF multimer pattern including the UL multimers not present in pdVWF concentrates. rVWF displayed higher specific platelet-binding activity, and faster mediation of platelet adhesion to collagen under shear stress versus pdVWF concentrates. rVWF also demonstrated higher FVIII binding capacity than Haemate P®, Voncento® and Wilate®. Modeling provided evidence that VWF:RCo activity in patients with severe VWD treated with rVWF is associated with L/UL VWF multimers in the circulation. Conclusions: Findings suggest that the L and UL multimers preserved in rVWF contribute to high biological activity and might be important for providing hemostatic efficacy.

3.
Res Pract Thromb Haemost ; 6(7): e12821, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36254254

RESUMO

Background: It is essential to measure the activity of factor VIII (FVIII) throughout the life cycle of a coagulation FVIII concentrate. Such measurement in nonclinical pharmacokinetic studies is potentially biased by the presence of endogenous nonhuman FVIII, and certain manufacturing process-related additives can also impact the assay performance. Finally, the presence of FVIII activity-mimicking antibodies poses challenges when measuring FVIII in samples. Therefore, we developed an antibody-based chromogenic FVIII assay, which facilitates the selective and sensitive activity measurement of human FVIII in the presence of animal plasma and interfering agents. Methods: Plate-bound monoclonal anti-FVIII antibody specifically captured human FVIII, which was then measured with a chromogenic activity assay. A human reference plasma preparation was used to construct the calibration curve. Spike recovery was carried out in a citrated cynomolgus monkey plasma-solvent/detergent mixture and in the presence of the bispecific antibody emicizumab. Results: The calibration curve ranged from 3.03 to 97.0 mIU FVIII/ml and was obtained repeatedly with good accuracy. B domain-deleted and full-length FVIII did not differ in their responses. Recovery of spiked human FVIII in citrated cynomolgus monkey plasma was 102.7%, while neither native monkey plasma nor the other animal specimen tested showed any activity. Solvent/detergent solution and the bispecific antibody emicizumab had no influence on the assay. Conclusion: Combining antibody-mediated specific capture of human FVIII and a chromogenic activity assay resulted in a selective and sensitive measurement of human FVIII with no interference by endogenous, nonhuman FVIII, manufacturing process additives, or an FVIII activity-mimicking antibody.

4.
Haematologica ; 107(11): 2650-2660, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443560

RESUMO

Sickle cell disease (SCD) is an inherited red blood cell disorder that occurs worldwide. Acute vaso-occlusive crisis is the main cause of hospitalization in patients with SCD. There is growing evidence that inflammatory vasculopathy plays a key role in both acute and chronic SCD-related clinical manifestations. In a humanized mouse model of SCD, we found an increase of von Willebrand factor activity and a reduction in the ratio of a disintegrin and metalloproteinase with thrombospondin type 1 motif, number 13 (ADAMTS13) to von Willebrand factor activity similar to that observed in the human counterpart. Recombinant ADAMTS13 was administered to humanized SCD mice before they were subjected to hypoxia/reoxygenation (H/R) stress as a model of vaso-occlusive crisis. In SCD mice, recombinant ADAMTS13 reduced H/R-induced hemolysis and systemic and local inflammation in lungs and kidneys. It also diminished H/R-induced worsening of inflammatory vasculopathy, reducing local nitric oxidase synthase expression. Collectively, our data provide for the firsttime evidence that pharmacological treatment with recombinant ADAMTS13 (TAK-755) diminished H/R-induced sickle cell-related organ damage. Thus, recombinant ADAMTS13 might be considered as a potential effective disease-modifying treatment option for sickle cell-related acute events.


Assuntos
Proteína ADAMTS13 , Anemia Falciforme , Doenças Vasculares , Animais , Humanos , Camundongos , Proteína ADAMTS13/uso terapêutico , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Modelos Animais de Doenças , Eritrócitos Anormais , Hipóxia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/etiologia , Fator de von Willebrand , Proteínas Recombinantes/uso terapêutico
5.
Thromb Res ; 201: 100-112, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662796

RESUMO

Thrombosis affecting the pulmonary and systemic vasculature is common during severe COVID-19 and causes adverse outcomes. Although thrombosis likely results from inflammatory activation of vascular cells, the mediators of thrombosis remain unconfirmed. In a cross-sectional cohort of 36 severe COVID-19 patients, we show that markedly increased plasma von Willebrand factor (VWF) levels were accompanied by a partial reduction in the VWF regulatory protease ADAMTS13. In all patients we find this VWF/ADAMTS13 imbalance to be associated with persistence of ultra-high-molecular-weight (UHMW) VWF multimers that are highly thrombogenic in some disease settings. Incubation of plasma samples from patients with severe COVID-19 with recombinant ADAMTS13 (rADAMTS13) substantially reduced the abnormally high VWF activity, reduced overall multimer size and depleted UHMW VWF multimers in a time and concentration dependent manner. Our data implicate disruption of normal VWF/ADAMTS13 homeostasis in the pathogenesis of severe COVID-19 and indicate that this can be reversed ex vivo by correction of low plasma ADAMTS13 levels. These findings suggest a potential therapeutic role for rADAMTS13 in helping restore haemostatic balance in COVID-19 patients.


Assuntos
COVID-19 , Proteínas Recombinantes , Trombose , Proteína ADAMTS13 , Estudos Transversais , Humanos , Proteínas Recombinantes/uso terapêutico , SARS-CoV-2 , Fator de von Willebrand
6.
Blood Coagul Fibrinolysis ; 31(6): 353-365, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467424

RESUMO

: Accurate monitoring of coagulation, needed for optimal management of patients with haemophilia A with inhibitors, presents a challenge for treating physicians. Although global haemostatic assays may be used in this population, their utility with nonfactor therapies has yet to be established in the clinical setting. The aim of this study was to assess options for potential haemostatic activity monitoring and feasibility for factor VIII (FVIII)-equivalency measurement with a sequence identical analogue (SIA) to emicizumab using different coagulation assays. SIA was analysed using five commercial chromogenic assays and activated partial thromboplastin time (aPTT) assays including clot waveform analysis using five different triggers. Recombinant FVIII served as a comparator in all assays. Thrombin generation in haemophilia A plasma was measured using extrinsic and intrinsic trigger conditions (tissue factor or Factor XIa). Of the five chromogenic assays, a concentration-dependent increase in Factor Xa was observed with one assay, with human Factor IXa and X reagents. The SIA dose-response signal plateaued at therapeutically relevant concentrations and was nonparallel with FVIII reference, thereby not permitting FVIII-equivalence assessment. aPTT varied between reagents, with aPTT normalization occurring at low and below-therapeutic SIA concentrations. SIA [600 nmol/l (90 µg/ml)] only partially restored thrombin generation in individual haemophilia A patient plasma. FVIII-equivalence of SIA could not be determined using standard FVIII protocols and was found to be highly influenced by assay type, analytical conditions and parameters used for calculation. New and/or modified methodology and standard reagents specific for use with nonfactor therapies are required for their utilization in the clinical setting.


Assuntos
Anticorpos Biespecíficos/metabolismo , Anticorpos Monoclonais Humanizados/metabolismo , Testes de Coagulação Sanguínea/métodos , Coagulação Sanguínea , Hemofilia A/sangue , Anticorpos Biespecíficos/química , Anticorpos Monoclonais Humanizados/química , Fator VIII/análise , Fator VIII/metabolismo , Fator X/metabolismo , Fator Xa/metabolismo , Células HEK293 , Hemofilia A/metabolismo , Humanos , Tempo de Tromboplastina Parcial/métodos
7.
J Pharmacol Exp Ther ; 371(1): 95-105, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31366602

RESUMO

Extended half-life (EHL) factor therapies are needed to reduce the burden of prophylaxis and improve treatment adherence in patients with hemophilia. BAX 826 is a novel polysialylated full-length recombinant factor VIII [polysialyic acid (PSA) rFVIII] with improved pharmacokinetics (PK), prolonged pharmacology, and maintained safety attributes to enable longer-acting rFVIII therapy. In factor VIII (FVIII)-deficient hemophilic mice, PSArFVIII showed a substantially higher mean residence time (>2-fold) and exposure (>3-fold), and prolonged efficacy in tail-bleeding experiments (48 vs. 30 hours) compared with unmodified recombinant FVIII (rFVIII), as well as a potentially favorable immunogenicity profile. Reduced binding to a scavenger receptor (low-density lipoprotein receptor-related protein 1) and von Willebrand factor (VWF) as well as a largely VWF-independent circulation time in mice provide a rationale for prolonged BAX 826 activity. The significantly improved PK profile versus rFVIII was confirmed in cynomolgus monkeys [mean residence time: 23.4 vs. 10.1 hours; exposure (area under the curve from time 0 to infinity): 206 vs. 48.2 IU/ml⋅h] and is in line with results from rodent studies. Finally, safety and toxicity evaluations did not indicate increased thrombogenic potential, and repeated administration of BAX 826 to monkeys and rats was well tolerated. The favorable profile and mechanism of this novel experimental therapeutic demonstrated all of the requirements for an EHL-rFVIII candidate, and thus BAX 826 was entered into clinical assessment for the treatment of hemophilia A. SIGNIFICANCE STATEMENT: Prolongation of FVIII half-life aims to reduce the burden of prophylaxis and improve treatment outcomes in patients with hemophilia. This study shows that polysialylation of PSArFVIII resulted in prolongations of rFVIII circulation time and procoagulant activity, together with a favorable nonclinical safety profile of the experimental therapeutic.


Assuntos
Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Absorção Fisiológica , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Fator VIII/efeitos adversos , Fator VIII/farmacocinética , Feminino , Meia-Vida , Humanos , Macaca fascicularis , Masculino , Ácido N-Acetilneuramínico/química , Ligação Proteica , Ratos , Receptores Depuradores/metabolismo , Fator de von Willebrand/metabolismo
8.
Biomicrofluidics ; 11(4): 044117, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28936275

RESUMO

Wall shear rates are critical for a broad variety of fluidic phenomena and are taken into account in nearly every experimental or simulation study. Generally, shear rates are not observable directly but rather derived from other parameters such as pressure and flow, often assuming somehow idealized systems. However, there is a biological system which is able to constantly measure the wall shear as a part of a regulatory circuit: The blood circulation system takes advantage of shear rate sensor (protein)molecules (multimeric forms of von Willebrand Factor, VWF), which are dissolved in the blood plasma and dramatically change their conformation under shear conditions. The conformational changes are accompanied by several functional variations and therefore interplay with the regulation of the coagulation system. In this study, we use a recombinantly produced and therefore well-defined multimeric form of VWF as a sensor which directly responds to shear rates. Shear rates, up to 32.000 s-1, were obtained using a kind of micro-plate-to-plate rheometer capable of adsorbing shear-stretched VWF oligomeric molecules on a surface to conserve their differently stretched conformation and so allow detection of their elongation by atomic force microscopy. The laminar flow in this geometrically simple device has been characterized by adopting classical fluid dynamical models, in order to ensure well-known, stable shear rates which could be correlated quantitatively with an observed stretching of sensor molecules.

9.
Hamostaseologie ; 37(S 01): S15-S25, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29582921

RESUMO

Ultralarge multimers (ULM) of VWF are considered to be the most active with respect to binding to platelets and to subendothelial structures and therefore are of critical importance for the function of VWF in stabilizing the primary hemostatic plug. In contrast to plasma-derived FVIII-VWF concentrates, human rVWF obtained from mammalian cell culture retains the full-spectrum of intact multimers, including ULM, as physiologically formed in the Golgi apparatus and stored in platelet α-granules and endothelial cell Weibel-Palade bodies. In the course of physico and biochemical, functional and animal studies, rVWF exhibited superiority in structure and function compared to pdVWF. These effects seemed to correlate with the multimer size and therefore might be attributed to the presence of ULM in rVWF preparations. The pharmacokinetic (PK), safety and efficacy characteristics seen in preclinical studies were further demonstrated in clinical trials.


Assuntos
Multimerização Proteica/fisiologia , Proteínas Recombinantes/química , Doenças de von Willebrand/sangue , Fator de von Willebrand/fisiologia , Animais , Plaquetas/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Fator VIII/fisiologia , Fator VIII/uso terapêutico , Complexo de Golgi/metabolismo , Hemostasia/efeitos dos fármacos , Hemostasia/fisiologia , Humanos , Peso Molecular , Proteínas Recombinantes/uso terapêutico , Corpos de Weibel-Palade/metabolismo , Doenças de von Willebrand/tratamento farmacológico , Fator de von Willebrand/uso terapêutico
10.
Anal Chem ; 87(20): 10299-305, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26369694

RESUMO

Vital functions of mammals are only possible due to the behavior of blood to coagulate most efficiently in vessels with particularly high wall shear rates. This is caused by the functional changes of the von Willebrand Factor (VWF), which mediates coagulation of blood platelets (primary hemostasis) especially when it is stretched under shear stress. Our data show that shear stretching also affects other functions of VWF: Using a customized device to simulate shear conditions and to conserve the VWF molecules in their unstable, elongated conformation, we visualize at single molecule level by AFM that VWF is preferentially cleaved by the protease ADAMTS13 at higher shear rates. In contrast to this high shear-rate-selective behavior, VWF binds FVIII more effectively only below a critical shear rate of ∼30.000 s(-1), indicating that under harsh shear conditions FVIII is released from its carrier protein. This may be required to facilitate delivery of FVIII locally to promote secondary hemostasis.


Assuntos
Proteínas ADAM/química , Fator VIII/química , Microscopia de Força Atômica , Fator de von Willebrand/química , Proteínas ADAM/metabolismo , Proteínas ADAM/ultraestrutura , Proteína ADAMTS13 , Fator VIII/metabolismo , Fator VIII/ultraestrutura , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Fator de von Willebrand/metabolismo , Fator de von Willebrand/ultraestrutura
11.
Anal Bioanal Chem ; 407(20): 6051-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26001809

RESUMO

FVIII is a multi-domain protein organized in a heavy and a light chain, and a B-domain whose biological function is still a matter of debate. The 3D structure of a B-domain-deleted FVIII variant has been determined by X-ray crystallography, leaving unexplained the functional nature of the flexible B-domain which could play an important role in the structure-function relationship since it is removed during the activation process. To obtain clues on the function of the B-domain, the morphology of full-length FVIII and its isolated domains was determined in the absence or presence of Ca(2+). Recombinant full-length FVIII, the purified heavy chain, light chain and B-domain as well as B-domain-deleted rFVIII were analysed in buffers of different Ca(2+) concentrations by atomic force microscopy. In the absence of Ca(2+), FVIII appeared as a globular molecule, whereas at high amounts of Ca(2+) up to 50-nm long tail structures emerged. These tails could be identified as unravelled B-domains, as images of isolated B-domains showed the same morphology and heavy chains which include the B-domain were also rich of tails, whereas the isolated light chains and B-domain-deleted FVIII lacked any deviation from a globular shape. The images further suggested that the B-domain interacts with the light chain particularly at low Ca(2+) concentrations. Our results show a Ca(2+)-regulated conformational change of the B-domain in the context of full-length rFVIII. As the B-domain tightly associated with the core of the FVIII molecule under low Ca(2+)-concentrations, a stabilizing function on FVIII under non-activating conditions may be proposed.


Assuntos
Cálcio/metabolismo , Fator VIII/metabolismo , Microscopia de Força Atômica , Cátions Bivalentes/metabolismo , Fator VIII/química , Fator VIII/ultraestrutura , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
12.
Expert Rev Clin Pharmacol ; 8(2): 163-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25660348

RESUMO

Nonacog gamma is a new recombinant factor IX to treat factor IX deficiency. It is indicated for control of bleeding episodes, perioperative management and routine prophylaxis to prevent or reduce the frequency of bleeding episodes in adults and children with hemophilia B. Nonacog gamma was first approved in the USA in June 2013 under the trade name RIXUBIS followed by market approvals in Australia and the EU in 2014, and marketing authorization decision is pending in Japan. Nonacog gamma is derived from a recombinant Chinese hamster ovary cell line using a state of the art biotechnological manufacturing process. Recombinant factor IX is produced by Baxter's protein-free fermentation technology, which was first developed for ADVATE. The product is purified and formulated in the absence of any human or animal-derived protein. Nonacog gamma was characterized both in comprehensive in vitro and in vivo non-clinical studies as well as in an extensive clinical trial program.


Assuntos
Fator IX/uso terapêutico , Hemofilia B/tratamento farmacológico , Hemostáticos/uso terapêutico , Adulto , Animais , Células CHO , Criança , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/uso terapêutico
13.
Blood ; 125(7): 1180-8, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25515962

RESUMO

Recently, we reported that distinct immunoglobulin (Ig) isotypes and IgG subclasses of factor VIII (FVIII)-specific antibodies are found in different cohorts of patients with hemophilia A and in healthy individuals. Prompted by these findings, we further investigated the distinguishing properties among the different populations of FVIII-specific antibodies. We hypothesized that the affinity of antibodies would discriminate between the neutralizing and nonneutralizing antibodies found in different study cohorts. To test this idea, we established a competition-based enzyme-linked immunosorbent assay technology to assess the apparent affinities for each isotype and IgG subclass of FVIII-specific antibodies without the need for antibody purification. We present a unique data set of apparent affinities of FVIII-specific antibodies found in healthy individuals, patients with congenital hemophilia A with and without FVIII inhibitors, and patients with acquired hemophilia A. Our data indicate that FVIII-specific antibodies found in patients with FVIII inhibitors have an up to 100-fold higher apparent affinity than that of antibodies found in patients without inhibitors and in healthy individuals. High-affinity FVIII-specific antibodies could be retrospectively detected in longitudinal samples of an individual patient with FVIII inhibitors 543 days before the first positive Bethesda assay. This finding suggests that these antibodies might serve as potential biomarkers for evolving FVIII inhibitor responses.


Assuntos
Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos , Autoanticorpos/imunologia , Fator VIII/imunologia , Hemofilia A/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Hemofilia A/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Anal Bioanal Chem ; 406(5): 1411-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24363113

RESUMO

Atomic force microscopy is unmatched in terms of high-resolution imaging under ambient conditions. Over the years, substantial progress has been made using this technique to improve our understanding of biological systems on the nanometer scale, such as visualization of single biomolecules. For monitoring also the interaction between biomolecules, in situ high-speed imaging is making enormous progress. Here, we describe an alternative ex situ imaging method where identical molecules are recorded before and after reaction with a binding partner. Relocation of the identical molecules on the mica surface was thereby achieved by using a nanoscale scratch as marker. The method was successfully applied to study the complex formation between von Willebrand factor (VWF) and factor VIII (FVIII), two essential haemostatic components of human blood. FVIII binding was discernible by an appearance of globular domains appended to the N-terminal large globular domains of VWF. The specificity of the approach could be demonstrated by incubating VWF with FVIII in the presence of a high salt buffer which inhibits the interaction between these two proteins. The results obtained indicate that proteins can maintain their reactivity for subsequent interactions with other molecules when gently immobilized on a solid substrate and subjected to intermittent drying steps. The technique described opens up a new analytical perspective for studying protein-protein interactions as it circumvents some of the obstacles encountered by in situ imaging and other ex situ techniques.


Assuntos
Fator VIII/química , Proteínas Imobilizadas/química , Microscopia de Força Atômica/métodos , Imagem Molecular/métodos , Fator de von Willebrand/química , Silicatos de Alumínio/química , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
15.
Semin Thromb Hemost ; 36(5): 510-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20635317

RESUMO

The complex structure, large size, and multiple posttranslational modifications of von Willebrand factor (VWF) presented a technological challenge for the production of recombinant VWF (rVWF). Nonetheless, we developed an rVWF product for treating von Willebrand disease, whereupon rVWF is coexpressed with recombinant factor VIII (rFVIII) in Chinese hamster ovary cells used to produce rFVIII for the treatment of hemophilia A. Here we describe the characterization of the structure and function of the rVWF drug product, with a focus on its in vitro platelet aggregation and matrix protein binding functions. Electron microscopy and multimer analysis revealed a highly organized structure for the rVWF protein, with a homogeneous multimer distribution including ultrahigh molecular weight multimers. The specific activity for binding to collagen and platelets mediated by ristocetin is higher in rVWF than in commercial plasma-derived VWF-FVIII complex products. The affinity and binding capacity of rVWF to FVIII is comparable to VWF in plasma. rVWF effectively binds to platelets and promotes platelet adhesion under shear stress similar to VWF in human plasma.


Assuntos
Doenças de von Willebrand/tratamento farmacológico , Fator de von Willebrand/química , Fator de von Willebrand/farmacologia , Animais , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA