Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Total Environ ; 890: 164420, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236451

RESUMO

A wide range of PFAS residues were studied in an aquifer used for drinking water production which was affected by historical PFAS contamination from a landfill and military camp. Samples were taken at three monitoring and four pumping wells at different depths ranging from 33 to 147 m below the land surface and analysed for a series of 53 PFAS (C2-C14) and PFAS precursors (C4-C24). A comparison of results to earlier research from 2013, with a more limited range of PFAS, showed decreasing concentrations and migration of PFAS with increasing depth and distance from the contamination source. The PFAS profile and branched/linear isomer ratio are used as source characterization tools. The landfill was confirmed to contaminate the groundwater in both monitoring wells, while the military camp was indicated as a probable source for PFAS observed in the deep sampling points of one of the monitoring wells. Pumping wells used to produce drinking water are not yet affected by these two PFAS sources. In one of the four sampled pumping wells, a different PFAS profile and isomer pattern was observed, which indicated a different but yet unknown source. This work shows the necessity of implementing regular screening to identify potential (historical) PFAS sources to be able to prevent future contaminant migration nearby and towards drinking water abstraction wells.


Assuntos
Água Potável , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Água Potável/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Subterrânea/química , Fluorocarbonos/análise
3.
Sci Total Environ ; 690: 636-646, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301504

RESUMO

Publicly available chemical assessments of hydraulic fracturing related waters are generally based on shale gas practices in the U.S. There is a lack of information on hydraulic fracturing related gas development from EU countries and more generally on other types of extractions. This research fills this knowledge gap by presenting chemical and bioassay assessments of hydraulic fracturing related waters from a tight gas development in the Netherlands. Fracturing fluid, flowback water and groundwater from surrounding aquifers before and after the actual fracturing were analysed by means of high resolution liquid chromatography tandem mass spectrometry, the Ames test and three chemical activated luciferase gene expression bioassays aimed at determining genotoxicity, oxidative stress response and polyaromatic hydrocarbon contamination. After sample enrichment a higher number of peaks can be found in both fracturing fluid and flowback samples. No clear differences in chemical composition were shown in the groundwater samples before and after hydraulic fracturing. Preliminary environmental fate data of the tentatively identified chemicals points towards persistence in water. Clear genotoxic and oxidative stress responses were found in the fracturing fluid and flowback samples. A preliminary suspect screening resulted in 25 and 36 matches in positive and negative ionisation respectively with the 338 possible suspect candidates on the list. Extensive measures relating to the handling, transport and treatment of hydraulic fracturing related waters are currently in place within the Dutch context. The results of the present study provide a scientific justification for such measures taken to avoid adverse environmental and human health impacts.


Assuntos
Monitoramento Ambiental , Fraturamento Hidráulico , Poluentes Químicos da Água/análise , Bioensaio , Países Baixos , Campos de Petróleo e Gás
4.
Integr Environ Assess Manag ; 15(1): 126-134, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30144268

RESUMO

A plethora of in vitro bioassays are developed in the context of chemical risk assessment and clinical diagnostics to test effects on different biological processes. Such assays can also be implemented in effect-based monitoring (EBM) of (drinking) water quality alongside chemical analyses. Effects-based monitoring can provide insight into risks for the environment and human health associated with exposure to (unknown) complex, low-level mixtures of micropollutants, which fits in the risk-based approach that was recently introduced in the European Drinking Water Directive. Some challenges remain, in particular those related to selection and interpretation of bioassays. For water quality assessment, carcinogenesis, adverse effects on reproduction and development, effects on xenobiotic metabolism, modulation of hormone systems, DNA reactivity, and adaptive stress responses are considered the most relevant toxicological endpoints. An evaluation procedure of the applicability and performance of in vitro bioassays for water quality monitoring, based on existing information, has been developed, which can be expanded with guidelines for experimental evaluations. In addition, a methodology for the interpretation of in vitro monitoring data is required, because the sensitivity of specific in vitro bioassays in combination with sample concentration may lead to responses of chemicals (far) below exposure concentrations that are relevant for human health effects. Different approaches are proposed to derive effect-based trigger values (EBTs), including EBTs based on (1) relative ecotoxicity potency, (2) health-based threshold values for chronic exposure in humans and kinetics of reference chemicals, and (3) read-across from (drinking) water guideline values. Effects-based trigger values need to be chosen carefully in order to be sufficiently but not overly conservative to indicate potential health effects. Consensus on the crucial steps in the selection and interpretation of in vitro bioassay data will facilitate implementation and legal embedding in the context of water quality monitoring of such assays in EBM strategies. Integr Environ Assess Manag 2019;15:126-134. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Água Potável/normas , Poluição da Água/legislação & jurisprudência , Purificação da Água , Qualidade da Água/normas , União Europeia , Medição de Risco
5.
Chemosphere ; 209: 373-380, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29935466

RESUMO

The present study explores the ToxCast/Tox21 database to select candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. To this aim, the ToxCast/Tox21 database was explored for bioassays that detect polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), (chloro)phenols ((C)Ps) and halogenated aliphatic hydrocarbons (HAliHs), which are included in the European and/or Dutch Drinking Water Directives. Based on the analysis of the availability and performance of bioassays included in the database, we concluded that several bioassays are suitable as bioanalytical tools for assessing the presence of PAHs and (C)Ps in drinking water sources. No bioassays were identified for AAs and HAliHs, due to the limited activity of these chemicals and/or the limited amount of data on these chemicals in the database. A series of bioassays was selected that measure molecular or cellular effects that are covered by bioassays currently in use for chemical water quality monitoring. Interestingly, also bioassays were selected that represent molecular or cellular effects that are not covered by bioassays currently applied. The usefulness of these newly identified bioassays as bioanalytical tools should be further evaluated in follow-up studies. Altogether, this study shows how exploration of the ToxCast/Tox21 database provides a series of candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. This assessment can be performed for any group of chemicals of interest (if represented in the database), and may provide candidate bioassays that can be used to complement the currently applied bioassays for chemical water quality assessment.


Assuntos
Bioensaio/métodos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Qualidade da Água , Água/química
6.
Environ Int ; 118: 293-303, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909348

RESUMO

Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 µg/L for Cramer class I substances and 4 µg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring.


Assuntos
Água Potável , Medição de Risco , Poluentes Químicos da Água , Água Potável/química , Água Potável/normas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/classificação , Poluentes Químicos da Água/normas , Poluentes Químicos da Água/toxicidade
7.
Talanta ; 186: 527-537, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29784397

RESUMO

A novel sample preparation procedure relying on Solid Phase Extraction (SPE) combining different sorbent materials on a sequential-based cartridge was optimized and validated for the enrichment of 117 widely diverse contaminants of emerging concern (CECs) from surface waters (SW) and further combined chemical and biological analysis on subsequent extracts. A liquid chromatography coupled to high resolution tandem mass spectrometry LC-(HR)MS/MS protocol was optimized and validated for the quantitative analysis of organic CECs in SW extracts. A battery of in vitro CALUX bioassays for the assessment of endocrine, metabolic and genotoxic interference and oxidative stress were performed on the same SW extracts. Satisfactory recoveries ([70-130]%) and precision (< 30%) were obtained for the majority of compounds tested. Internal standard calibration curves used for quantification of CECs, achieved the linearity criteria (r2 > 0.99) over three orders of magnitude. Instrumental limits of detection and method limits of quantification were of [1-96] pg injected and [0.1-58] ng/L, respectively; while corresponding intra-day and inter-day precision did not exceed 11% and 20%. The developed procedure was successfully applied for the combined chemical and toxicological assessment of SW intended for drinking water supply. Levels of compounds varied from < 10 ng/L to < 500 ng/L. Endocrine (i.e. estrogenic and anti-androgenic) and metabolic interference responses were observed. Given the demonstrated reliability of the validated sample preparation method, the authors propose its integration in an effect-directed analysis procedure for a proper evaluation of SW quality and hazard assessment of CECs.

9.
Water Res ; 139: 10-18, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29621713

RESUMO

The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs.


Assuntos
Água Potável , Disruptores Endócrinos/metabolismo , Águas Residuárias , Poluentes Químicos da Água/metabolismo , Bioensaio , Água Potável/análise , Ecossistema , Disruptores Endócrinos/análise , Monitoramento Ambiental , Glucocorticoides/análise , Glucocorticoides/metabolismo , Praguicidas/análise , Praguicidas/metabolismo , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Receptores X de Retinoides/metabolismo , Águas Residuárias/análise , Poluentes Químicos da Água/análise
10.
Chemosphere ; 191: 868-875, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107228

RESUMO

Environmental chemicals can induce thyroid disruption through a number of mechanisms including altered thyroid hormone biosynthesis and transport, as well as activation and inhibition of the thyroid receptor. In the current study six in vitro bioassays indicative of different mechanisms of thyroid disruption and one whole animal in vivo assay were applied to 9 model compounds and 4 different water samples (treated wastewater, surface water, drinking water and ultra-pure lab water; both unspiked and spiked with model compounds) to determine their ability to detect thyroid active compounds. Most assays correctly identified and quantified the model compounds as agonists or antagonists, with the reporter gene assays being the most sensitive. However, the reporter gene assays did not detect significant thyroid activity in any of the water samples, suggesting that activation or inhibition of the thyroid hormone receptor is not a relevant mode of action for thyroid endocrine disruptors in water. The thyroperoxidase (TPO) inhibition assay and transthyretin (TTR) displacement assay (FITC) detected activity in the surface water and treated wastewater samples, but more work is required to assess if this activity is a true measure of thyroid activity or matrix interference. The whole animal Xenopus Embryonic Thyroid Assay (XETA) detected some activity in the unspiked surface water and treated wastewater extracts, but not in unspiked drinking water, and appears to be a suitable assay to detect thyroid activity in environmental waters.


Assuntos
Bioensaio/normas , Disruptores Endócrinos/análise , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/análise , Animais , Autoantígenos , Genes Reporter , Iodeto Peroxidase , Proteínas de Ligação ao Ferro , Glândula Tireoide/efeitos dos fármacos , Xenopus laevis
11.
Sci Total Environ ; 601-602: 1849-1868, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629112

RESUMO

Growing concern about the adverse environmental and human health effects of a wide range of micropollutants requires the development of novel tools and approaches to enable holistic monitoring of their occurrence, fate and effects in the aquatic environment. A European-wide demonstration program (EDP) for effect-based monitoring of micropollutants in surface waters was carried out within the Marie Curie Initial Training Network EDA-EMERGE. The main objectives of the EDP were to apply a simplified protocol for effect-directed analysis, to link biological effects to target compounds and to estimate their risk to aquatic biota. Onsite large volume solid phase extraction of 50 L of surface water was performed at 18 sampling sites in four European river basins. Extracts were subjected to effect-based analysis (toxicity to algae, fish embryo toxicity, neurotoxicity, (anti-)estrogenicity, (anti-)androgenicity, glucocorticoid activity and thyroid activity), to target analysis (151 organic micropollutants) and to nontarget screening. The most pronounced effects were estrogenicity, toxicity to algae and fish embryo toxicity. In most bioassays, major portions of the observed effects could not be explained by target compounds, especially in case of androgenicity, glucocorticoid activity and fish embryo toxicity. Estrone and nonylphenoxyacetic acid were identified as the strongest contributors to estrogenicity, while herbicides, with a minor contribution from other micropollutants, were linked to the observed toxicity to algae. Fipronil and nonylphenol were partially responsible for the fish embryo toxicity. Within the EDP, 21 target compounds were prioritized on the basis of their frequency and extent of exceedance of predicted no effect concentrations. The EDP priority list included 6 compounds, which are already addressed by European legislation, and 15 micropollutants that may be important for future monitoring of surface waters. The study presents a novel simplified protocol for effect-based monitoring and draws a comprehensive picture of the surface water status across Europe.

12.
Environ Int ; 99: 120-130, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28017361

RESUMO

The presence of endocrine disrupting chemicals in the aquatic environment poses a risk for ecosystem health. Consequently there is a need for sensitive tools, such as in vitro bioassays, to monitor endocrine activity in environmental waters. The aim of the current study was to assess whether current in vitro bioassays are suitable to detect endocrine activity in a range of water types. The reviewed assays included androgenic (n=11), progestagenic (n=6), glucocorticoid (n=5), thyroid (n=5) and estrogenic (n=8) activity in both agonist and antagonist mode. Existing in vitro bioassay data were re-evaluated to determine assay sensitivity, with the calculated method detection limit compared with measured hormonal activity in treated wastewater, surface water and drinking water to quantify whether the studied assays were sufficiently sensitive for environmental samples. With typical sample enrichment, current in vitro bioassays are sufficiently sensitive to detect androgenic activity in treated wastewater and surface water, with anti-androgenic activity able to be detected in most environmental waters. Similarly, with sufficient enrichment, the studied mammalian assays are able to detect estrogenic activity even in drinking water samples. Fewer studies have focused on progestagenic and glucocorticoid activity, but some of the reviewed bioassays are suitable for detecting activity in treated wastewater and surface water. Even less is known about (anti)thyroid activity, but the available data suggests that the more sensitive reviewed bioassays are still unlikely to detect this type of activity in environmental waters. The findings of this review can help provide guidance on in vitro bioassay selection and required sample enrichment for optimised detection of endocrine activity in environmental waters.


Assuntos
Bioensaio , Água Potável/análise , Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise , Androgênios/análise , Animais , Bioensaio/métodos , Meio Ambiente , Glucocorticoides/análise , Humanos , Progestinas/análise , Sensibilidade e Especificidade , Glândula Tireoide/efeitos dos fármacos , Águas Residuárias/química
13.
Sci Total Environ ; 503-504: 22-31, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951181

RESUMO

SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.


Assuntos
Conservação dos Recursos Naturais/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Recursos Hídricos/estatística & dados numéricos , Ecossistema , Monitoramento Ambiental , Política Ambiental , União Europeia , Substâncias Perigosas/análise , Medição de Risco , Poluição Química da Água/estatística & dados numéricos
14.
Environ Toxicol Pharmacol ; 36(3): 1291-303, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24216068

RESUMO

The combination of in vitro bioassays and chemical screening can provide a powerful toolbox to determine biologically relevant compounds in water extracts. In this study, a sample preparation method is evaluated for the suitability for both chemical analysis and in vitro bioassays. A set of 39 chemicals were spiked to surface water, which were extracted using Oasis MCX cartridges. The extracts were chemically analyzed by liquid chromatography linear ion trap Orbitrap analysis and recoveries appeared to be on average 61% Compounds with logK(ow) values in the range between 0 and 4 are recovered well using this method. In a next step, the same extracts were tested for genotoxic activity using the Comet assay and Ames fluctuation test and for specific endocrine receptor activation using a panel of CALUX assays, for estrogenic (ER), androgenic (AR), glucocorticoid (GR), progestagenic (PR), and thyroidogenic (TR) agonistic activities. The results of the genotoxicity assays indicated that spiked genotoxic compounds were preserved during sample preparation. The measured responses of the GR CALUX and ER CALUX assays were similar to the predicted responses. The measured responses in the AR CALUX and PR CALUX assays were much lower than expected from the analytical concentration, probably due to antagonistic effects of some spiked compounds. Overall, the presented sample preparation method seems to be suitable for both chemical analysis and specific in vitro bioassay applications.


Assuntos
Bioensaio/métodos , Qualidade da Água/normas , Abastecimento de Água/análise , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ensaio Cometa , Dano ao DNA , Água Potável/análise , Disruptores Endócrinos/toxicidade , Humanos , Espectrometria de Massas , Testes de Mutagenicidade , Ratos , Manejo de Espécimes
15.
Chemosphere ; 93(2): 450-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23755988

RESUMO

Considering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research attention and several large monitoring campaigns have been carried out to assess estrogenic contamination in the aquatic environment. The introduction of novel in vitro bioassays enables researchers to study if - and to what extent - water bodies are under the impact of less-studied (synthetic) hormone active compounds. The aim of the present study was to carry out an assessment on the presence and extent of glucocorticogenic activity in Dutch surface waters that serve as sources for drinking water production. The results show glucocorticogenic activity in the range of

Assuntos
Água Potável/química , Glucocorticoides/análise , Poluentes Químicos da Água/análise , Bioensaio , Linhagem Celular Tumoral , Humanos , Países Baixos , Estações do Ano , Fatores de Tempo
16.
Environ Int ; 55: 109-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542573

RESUMO

To screen for hormonal activity in water samples, highly sensitive in vitro CALUX bioassays are available which allow detection of estrogenic (ERα), androgenic (AR), progestagenic (PR), and glucocorticoid (GR) activities. This paper presents trigger values for the ERα, AR, PR, and GR CALUX bioassays for agonistic hormonal activities in (drinking) water, which define a level above which human health risk cannot be waived a priori and additional examination of specific endocrine activity may be warranted. The trigger values are based on 1) acceptable or tolerable daily intake (ADI/TDI) values of specific compounds, 2) pharmacokinetic factors defining their bioavailability, 3) estimations of the bioavailability of unknown compounds with equivalent hormonal activity, 4) relative endocrine potencies, and 5) physiological, and drinking water allocation factors. As a result, trigger values of 3.8ng 17ß-estradiol (E2)-equivalents (eq)/L, 11ng dihydrotestosterone (DHT)-eq/L, 21ng dexamethasone (DEX)-eq/L, and 333ng Org2058-eq/L were derived. Benchmark Quotient (BQ) values were derived by dividing hormonal activity in water samples by the derived trigger using the highest concentrations detected in a recent, limited screening of Dutch water samples, and were in the order of (value) AR (0.41)>ERα (0.13)>GR (0.06)>PR (0.04). The application of trigger values derived in the present study can help to judge measured agonistic hormonal activities in water samples using the CALUX bioassays and help to decide whether further examination of specific endocrine activity followed by a subsequent safety evaluation may be warranted, or whether concentrations of such activity are of low priority with respect to health concerns in the human population. For instance, at one specific drinking water production site ERα and AR (but no GR and PR) activities were detected in drinking water, however, these levels are at least a factor 83 smaller than the respective trigger values, and therefore no human health risks are to be expected from hormonal activity in Dutch drinking water from this site.


Assuntos
Água Potável/efeitos adversos , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Antagonistas de Receptores de Andrógenos , Androgênios/análise , Androgênios/toxicidade , Bioensaio/métodos , Água Potável/química , Disruptores Endócrinos/análise , Receptor alfa de Estrogênio/metabolismo , Glucocorticoides/análise , Glucocorticoides/toxicidade , Humanos , Progestinas/análise , Progestinas/toxicidade , Poluentes Químicos da Água/análise
17.
Toxicol In Vitro ; 27(1): 44-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23036893

RESUMO

With the ultimate aim of increasing the utility of in vitro assays for toxicological risk assessment, a method was developed to calculate in vivo estrogenic potencies from in vitro estrogenic potencies of compounds by taking into account systemic availability. In vitro estrogenic potencies of three model compounds (bisphenol A, genistein, and 4-nonylphenol) relative to ethinylestradiol (EE2), determined with the estrogen receptor alpha (ERα) transcriptional activation assay using hER-HeLa-9903 cells, were taken from literature and used to calculate the EE2 equivalent (EE2EQ) effect doses in the predominantly ERα-dependent rat uterotrophic assay. Compound-specific differences in hepatic clearance relative to the reference compound EE2 were determined in vitro to examine whether in vivo estrogenic potencies reported in literature could be more accurately estimated. The EE2EQ doses allowed to predict in vivo uterotrophic responses within a factor of 6-25 and the inclusion of the hepatic clearance further improved the prediction with a factor 1.6-2.1 for especially genistein and bisphenol A. Yet, the model compounds still were less potent in vivo than predicted based on their EE2 equivalent estrogenic potency and hepatic clearance. For further improvement of the in vitro to in vivo predictive value of in vitro assays, the relevance of other kinetic characteristics should be studied, including binding to carrier proteins, oral bioavailability and the formation of estrogenic metabolites.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Etinilestradiol/metabolismo , Animais , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/farmacologia , Bioensaio , Linhagem Celular Tumoral , Feminino , Genisteína/metabolismo , Genisteína/farmacologia , Humanos , Cinética , Fígado/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fenóis/metabolismo , Fenóis/farmacologia , Ratos , Reprodutibilidade dos Testes , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento
18.
Environ Sci Technol ; 44(12): 4766-74, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20507090

RESUMO

In the past two decades much research effort has focused on the occurrence, effects, and risks of estrogenic compounds. However, increasing emissions of new emerging compounds may also affect the action of hormonal pathways other than the estrogenic hormonal axis. Recently, a suite of novel CALUX bioassays has become available that enables looking further than estrogenic effects only. By employing these bioassays, we recently showed high glucocorticogenic activity in wastewaters collected at various sites in The Netherlands. However, since bioassays provide an integrated biological response, the identity of the responsible biological compounds remained unknown. Therefore, our current objective was to elucidate the chemical composition of the wastewater extracts used in our previous study by means of LC-high-resolution Orbitrap MS/MS and to determine if the compounds quantified could account for the observed glucocorticoid responsive (GR) CALUX bioassay response. The mass spectrometric analysis revealed the presence of various glucocorticoids in the range of 13-1900 ng/L. In extracts of hospital wastewater-collected prior to sewage treatment-several glucocorticoids were identified (cortisol 275-301 ng/L, cortisone 381-472 ng/L, prednisone 117-545 ng/L, prednisolone 315-1918 ng/L, and triamcinolone acetonide 14-41 ng/L) which are used to treat a great number of human pathologies. A potency balance calculation based on the instrumental analyses and relative potencies (REPs) of the individual glucocorticoids supports the conclusion that triamcinolone acetonide (REP = 1.3), dexamethasone (REP = 1), and prednisolone (REP = 0.2) are the main contributors to the glucocorticogenic activity in the investigated wastewater extracts. The action of these compounds is concentration additive and the overall glucocorticogenic activity can be explained to a fairly large extent by their contribution.


Assuntos
Glucocorticoides/análise , Espectrometria de Massas/métodos , Eliminação de Resíduos Líquidos/métodos , Bioensaio , Cromatografia Líquida , Glucocorticoides/química , Resíduos de Serviços de Saúde/análise , Países Baixos , Padrões de Referência , Propriedades de Superfície
19.
Water Res ; 44(2): 461-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19766285

RESUMO

The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health.


Assuntos
Água Doce/química , Poluentes Químicos da Água/toxicidade , Abastecimento de Água/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/normas , Abastecimento de Água/normas
20.
Chemosphere ; 70(1): 93-100, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17681587

RESUMO

Amphibian metamorphosis assays are used to evaluate potential effects of endocrine disrupting compounds on the thyroid hormone axis. In this study, Xenopus laevis tadpoles are kept in a solution of 0.2% thiourea (TU) to arrest and synchronise them in their development. The advantage of this synchronized amphibian metamorphosis assays is that synchronised tadpoles are available at any time to start metamorphosis experiments, and experimental groups are much more homogenous at the start of experimental exposure compared with groups selected from an untreated pool of animals. The water volume per animal was kept constant throughout the experimental period to overcome the influence of declining numbers of animals per aquarium due to metamorphosis and mortality on the density dependent development of the remaining tadpoles. Clophen A50 (a technical PCB mixture), the single congener 3,3',4,4'-tetrachlorobiphenyl (PCB 77) and apolar sediment extracts that were previously tested positive in the T-Screen, an in vitro proliferation assay for thyroid hormone disruption, were tested in the Synchronized Amphibian Metamorphosis Assay. Endpoints studied were mortality, malformations, body weight, and percentage of metamorphosed froglets at the end of the 60-day experimental period, percentage of tadpoles in different developmental stages, and developmental stage-dependent awarded penalty points. Dietary exposure to Clophen A50 (0.2-50mg/kg food) resulted in a significant increased percentage of tadpoles that did not pass metamorphosis at concentrations higher than 2mg/kg food. Time until metamorphosis in those animals that were able to metamorphose after the 60-days experimental period was significantly decreased. Dietary exposure to PCB 77, a congener that can be readily metabolised, did not result in significant effects in any exposure group (2-500 microg/kg food). Apolar sediment extracts from two of the three sites that are contaminated with a wide variety of chemicals significantly decreased the percentage of metamorphosed animals and significantly increased the number of tadpoles that remained in early and late metamorphic stages. These effects already occurred when the extracts where diluted more than 1000 times (on an organic carbon base) compared to environmental concentrations. The rank of potency was comparable to results obtained with the T-screen. This suggests the presence of thyroid hormone disrupting compounds in the aquatic environment and possible effects of such compounds on animal development in the wild.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Sedimentos Geológicos/química , Metamorfose Biológica/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Animais , Antitireóideos/toxicidade , Bioensaio , Fenômenos Químicos , Físico-Química , Interpretação Estatística de Dados , Dieta , Disruptores Endócrinos/química , Poluentes Ambientais/química , Larva , Tioureia/toxicidade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA