Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(7): eade4814, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800428

RESUMO

Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.


Assuntos
Poliadenilação , Peixe-Zebra , Animais , Humanos , Recém-Nascido , Regiões 3' não Traduzidas , Éxons , Íntrons/genética , Peixe-Zebra/genética , Embrião não Mamífero
2.
Mol Cytogenet ; 14(1): 48, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620209

RESUMO

Nance-Horan syndrome (NHS) is a rare X-linked dominant disorder caused by mutation in the NHS gene on chromosome Xp22.13. (OMIM 302350). Classic NHS manifested in males is characterized by congenital cataracts, dental anomalies, dysmorphic facial features and occasionally intellectual disability. Females typically have a milder presentation. The majority of reported cases of NHS are the result of nonsense mutations and small deletions. Isolated X-linked congenital cataract is caused by non-recurrent rearrangement-associated aberrant NHS transcription. Classic NHS in females associated with gene disruption by balanced X-autosome translocation has been infrequently reported. We present a familial NHS associated with translocation t(X;19) (Xp22.13;q13.1). The proband, a 28-year-old female, presented with intellectual disability, dysmorphic features, short stature, primary amenorrhea, cleft palate, and horseshoe kidney, but no NHS phenotype. A karyotype and chromosome microarray analysis (CMA) revealed partial monosomy Xp/partial trisomy 19q with the breakpoint at Xp22.13 disrupting the NHS gene. Family history revealed congenital cataracts and glaucoma in the patient's mother, and congenital cataracts in maternal half-sister and maternal grandmother. The same balanced translocation t(X;19) was subsequently identified in both the mother and maternal half-sister, and further clinical evaluation of the maternal half-sister made a diagnosis of NHS. This study describes the clinical implication of NHS gene disruption due to balanced X-autosome translocations as a unique mechanism causing Nance-Horan syndrome, refines dose effects of NHS on disease presentation and phenotype expressivity, and justifies consideration of karyotype and fluorescence in situ hybridization (FISH) analysis for female patients with familial NHS if single-gene analysis of NHS is negative.

4.
Am J Hum Genet ; 98(5): 963-970, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27087320

RESUMO

Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.


Assuntos
Anormalidades Múltiplas/etiologia , Proteínas de Transporte/genética , Transtornos Cromossômicos/etiologia , Deficiências do Desenvolvimento/etiologia , Haploinsuficiência/genética , Mutação/genética , Animais , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 1 , Feminino , Humanos , Lactente , Masculino , Camundongos , Fenótipo , Prognóstico
5.
J Biol Chem ; 291(24): 12432-12443, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27129271

RESUMO

Pannexin1 (PANX1) is probably best understood as an ATP release channel involved in paracrine signaling. Given its ubiquitous expression, PANX1 pathogenic variants would be expected to lead to disorders involving multiple organ systems. Using whole exome sequencing, we discovered the first patient with a homozygous PANX1 variant (c.650G→A) resulting in an arginine to histidine substitution at position 217 (p.Arg217His). The 17-year-old female has intellectual disability, sensorineural hearing loss requiring bilateral cochlear implants, skeletal defects, including kyphoscoliosis, and primary ovarian failure. Her consanguineous parents are each heterozygous for this variant but are not affected by the multiorgan syndromes noted in the proband. Expression of the p.Arg217His mutant in HeLa, N2A, HEK293T, and Ad293 cells revealed normal PANX1 glycosylation and cell surface trafficking. Dye uptake, ATP release, and electrophysiological measurements revealed p.Arg217His to be a loss-of-function variant. Co-expression of the mutant with wild-type PANX1 suggested the mutant was not dominant-negative to PANX1 channel function. Collectively, we demonstrate a PANX1 missense change associated with human disease in the first report of a "PANX1-related disorder."


Assuntos
Anormalidades Múltiplas/genética , Conexinas/genética , Mutação em Linhagem Germinativa , Proteínas do Tecido Nervoso/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Trifosfato de Adenosina/metabolismo , Adolescente , Animais , Linhagem Celular Tumoral , Conexinas/metabolismo , Consanguinidade , Saúde da Família , Feminino , Células HEK293 , Células HeLa , Perda Auditiva Neurossensorial/patologia , Heterozigoto , Homozigoto , Humanos , Cifose/patologia , Masculino , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Insuficiência Ovariana Primária/patologia , Escoliose/patologia , Síndrome
6.
J Med Genet ; 52(11): 754-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26264232

RESUMO

BACKGROUND: Rare de novo mutations have been implicated as a significant cause of idiopathic intellectual disability. Large deletions encompassing 10p11.23 have been implicated in developmental delay, behavioural abnormalities and dysmorphic features, but the genotype-phenotype correlation was not delineated. Mutations in WAC have been recently reported in large screening cohorts of patients with intellectual disability or autism, but no full phenotypic characterisation was described. METHODS: Clinical and molecular characterisation of six patients with loss-of-function WAC mutations identified by whole exome sequencing was performed. Clinical data were obtained by retrospective chart review, parental interviews, direct patient interaction and formal neuropsychological evaluation. RESULTS: Five heterozygous de novo WAC mutations were identified in six patients. Three of the mutations were nonsense, and two were frameshift; all are predicted to cause loss of function either through nonsense-mediated mRNA decay or protein truncation. Clinical findings included developmental delay (6/6), hypotonia (6/6), behavioural problems (5/6), eye abnormalities (5/6), constipation (5/6), feeding difficulties (4/6), seizures (2/6) and sleep problems (2/6). All patients exhibited common dysmorphic features, including broad/prominent forehead, synophrys and/or bushy eyebrows, depressed nasal bridge and bulbous nasal tip. Posteriorly rotated ears, hirsutism, deep-set eyes, thin upper lip, inverted nipples, hearing loss and branchial cleft anomalies were also noted. CONCLUSIONS: Our case series show that loss-of-function mutations in WAC cause a recognisable genetic syndrome characterised by a neurocognitive phenotype and facial dysmorphism. Our data highly suggest that WAC haploinsufficiency is responsible for most of the phenotypic features associated with deletions encompassing 10p11.23.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Deficiências do Desenvolvimento/genética , Hipotonia Muscular/genética , Mutação , Anormalidades Múltiplas/diagnóstico , Adulto , Sintomas Comportamentais/diagnóstico , Sintomas Comportamentais/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Deficiências do Desenvolvimento/diagnóstico , Exoma , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Hipotonia Muscular/diagnóstico , Gravidez , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA