Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(11): 6416-6424, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38903399

RESUMO

Efficient treatment of wastewater contaminated with carcinogenic Cr(VI) has been a long-term challenge for both academic and industrial research efforts. Removal of Cr(VI) species by ion exchange is a relatively simple and efficient method, and its combination with highly tailorable nanomaterials is promising for the treatment of such wastewater. Here, we report a type of cationic porous organic polymer (POP), namely, PTPA-PIP, which can be prepared simply by converting the corresponding aromatic polyamine PTPA to its protonated form, thereby significantly increasing its hydrophilicity and ability to disperse homogeneously in water, crucial for application in water treatment. In addition to detailed characterization of the physicochemical properties of PTPA-PIP (including using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and solid-state NMR techniques), adsorption experiments demonstrate that PTPA-PIP removes low-concentration dichromate anions with very high performance, including excellent exchange capacity (maximum capacity of 230 mg Cr2O7 2-/g PTPA-PIP), ultrafast removal (initial adsorption rate of 83 mg g-1 min-1), excellent selectivity (∼10% loss of adsorption capacity in the presence of 40-fold concentration of competing anions), as well as superior reusability (reusable for at least 5 cycles without compromised performance). These results demonstrate that PTPA-PIP is an outstanding candidate for application in industrial settings for the effective removal of harmful Cr(VI) pollutants in wastewater.

2.
J Phys Chem C Nanomater Interfaces ; 128(13): 5408-5417, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38595774

RESUMO

Heat is an inexhaustible source of energy, and it can be exploited by thermoelectronics to produce electrical power or electrical responses. The search for a low-cost thermoelectric material that could achieve high efficiencies and can also be straightforwardly scalable has turned significant attention to the halide perovskite family. Here, we report the thermal voltage response of bismuth-based perovskite derivates and suggest a path to increase the electrical conductivity by applying chalcogenide doping. The films were produced by drop-casting or spin coating, and sulfur was introduced in the precursor solution using bismuth triethylxanthate. The physical-chemical analysis confirms the substitution. The sulfur introduction caused resistivity reduction by 2 orders of magnitude, and the thermal voltage exceeded 40 mV K-1 near 300 K in doped and undoped bismuth-based perovskite derivates. X-ray diffraction, Raman spectroscopy, and grazing-incidence wide-angle X-ray scattering were employed to confirm the structure. X-ray photoelectron spectroscopy, elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were employed to study the composition and morphology of the produced thin films. UV-visible absorbance, photoluminescence, inverse photoemission, and ultraviolet photoelectron spectroscopies have been used to investigate the energy band gap.

3.
ACS Mater Au ; 4(2): 204-213, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496043

RESUMO

Highly efficient electrocatalysts for water electrolysis are crucial to the widespread commercialization of the technology and an important step forward toward a sustainable energy future. In this study, an alternative method for boosting the electrocatalytic activity toward the oxygen evolution reaction (OER) of a well-known electrocatalyst (iridium) is presented. Iridium nanoparticles (2.1 ± 0.2 nm in diameter) functionalized with chiral molecules were found to markedly enhance the activity of the OER when compared to unfunctionalized and achiral functionalized iridium nanoparticles. At a potential of 1.55 V vs Reference Hydrogen Electrode (RHE), chiral functionalized iridium nanoparticles exhibited an average 85% enhancement in activity with respect to unfunctionalized iridium nanoparticles compared to an average 13% enhancement for the achiral functionalized iridium nanoparticle. This activity enhancement is attributed to a spin-selective electron transfer mechanism taking place on the chiral functionalized catalysts, a characteristic induced by the chirality of the ligand. This alternative path for the OER drastically reduces the production of hydrogen peroxide, which was confirmed via a colorimetric method.

8.
Faraday Discuss ; 250(0): 377-389, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37965928

RESUMO

Poly(nickel-benzene-1,2,4,5-tetrakis(thiolate)) (Ni-btt), an organometallic coordination polymer (OMCP) characterized by the coordination between benzene-1,2,4,5-tetrakis(thiolate) (btt) and Ni2+ ions, has been recognized as a promising p-type thermoelectric material. In this study, we employed a constitutional isomer based on benzene-1,2,3,4-tetrakis(thiolate) (ibtt) to generate the corresponding isomeric polymer, poly(nickel-benzene-1,2,3,4-tetrakis(thiolate)) (Ni-ibtt). Comparative analysis of Ni-ibtt and Ni-btt reveals several common infrared (IR) and Raman features attributed to their similar square-planar nickel-sulfur (Ni-S) coordination. Nevertheless, these two polymer isomers exhibit substantially different backbone geometries. Ni-btt possesses a linear backbone, whereas Ni-ibtt exhibits a more undulating, zig-zag-like structure. Consequently, Ni-ibtt demonstrates slightly higher solubility and an increased bandgap in comparison to Ni-btt. The most noteworthy dissimilarity, however, manifests in their thermoelectric properties. While Ni-btt exhibits p-type behavior, Ni-ibtt demonstrates n-type carrier characteristics. This intriguing divergence prompted further investigation into the influence of OMCP backbone geometry on the electronic structure and, particularly, the thermoelectric properties of these materials.

9.
Inorg Chem ; 63(1): 416-430, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101319

RESUMO

Bismuth-based coordination complexes are advantageous over other metal complexes, as bismuth is the heaviest nontoxic element with high spin-orbit coupling and potential optoelectronics applications. Herein, four bismuth halide-based coordination complexes [Bi2Cl6(phen-thio)2] (1), [Bi2Br6(phen-thio)2] (2), [Bi2I6(phen-thio)2] (3), and [Bi2I6(phen-Me)2] (4) were synthesized, characterized, and subjected to detailed photophysical studies. The complexes were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and NMR studies. Spectroscopic analyses of 1-4 in solutions of different polarities were performed to understand the role of the organic and inorganic components in determining the ground- and excited-state properties of the complexes. The photophysical properties of the complexes were characterized by ground-state absorption, steady-state photoluminescence, microsecond time-resolved photoluminescence, and absorption spectroscopy. Periodic density functional theory (DFT) calculations were performed on the solid-state structures to understand the role of the organic and inorganic parts of the complexes. The studies showed that changing the ancillary ligand from chlorine (Cl) and bromine (Br) to iodine (I) bathochromically shifts the absorption band along with enhancing the absorption coefficient. Also, changing the halides (Cl, Br to I) affects the photoluminescent quantum yields of the ligand-centered (LC) emissive state without markedly affecting the lifetimes. The combined results confirmed that ground-state properties are strongly influenced by the inorganic part, and the lower-energy excited state is LC. This study paves the way to design novel bismuth coordination complexes for optoelectronic applications by rigorously choosing the ligands and bismuth salt.

10.
J Mater Chem C Mater ; 11(21): 6943-6950, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37274026

RESUMO

Polydiketopyrrolopyrrole terthiophene (DPP3T) is an organic semiconducting polymer that has been widely investigated as the active layer within organic electronic devices, such as photovoltaics and bioelectronic sensors. To facilitate interfacing between biological systems and organic semiconductors it is crucial to tune the material properties to support not only cell adhesion, but also proliferation and growth. Herein, we highlight the potential of molecular doping to judiciously modulate the surface properties of DPP3T and investigate the effects on Schwann cell behaviour on the surface. By using p-type dopants FeCl3 and Magic Blue, we successfully alter the topography of DPP3T thin films, which in turn alters cell behaviour of a Schwann cell line on the surfaces of the films over the course of 48 hours. Cell numbers are significantly increased within both DPP3T doped films, as well as cells possessing larger, more spread out morphology indicated by cell size and shape analysis. Furthermore, the viability of the Schwann cells seeded on the surfaces of the films was not significantly lowered. The use of dopants for influencing cell behaviour on semiconducting polymers holds great promise for improving the cell-device interface, potentially allowing better integration of cells and devices at the initial time of introduction to a biological environment.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36749895

RESUMO

The tight regulation of the glucose concentration in the body is crucial for balanced physiological function. We developed an electrochemical transistor comprising an n-type conjugated polymer film in contact with a catalytic enzyme for sensitive and selective glucose detection in bodily fluids. Despite the promise of these sensors, the property of the polymer that led to such high performance has remained unknown, with charge transport being the only characteristic under focus. Here, we studied the impact of the polymer chemical structure on film surface properties and enzyme adsorption behavior using a combination of physiochemical characterization methods and correlated our findings with the resulting sensor performance. We developed five n-type polymers bearing the same backbone with side chains differing in polarity and charge. We found that the nature of the side chains modulated the film surface properties, dictating the extent of interactions between the enzyme and the polymer film. Quartz crystal microbalance with dissipation monitoring studies showed that hydrophobic surfaces retained more enzymes in a densely packed arrangement, while hydrophilic surfaces captured fewer enzymes in a flattened conformation. X-ray photoelectron spectroscopy analysis of the surfaces revealed strong interactions of the enzyme with the glycolated side chains of the polymers, which improved for linear side chains compared to those for branched ones. We probed the alterations in the enzyme structure upon adsorption using circular dichroism, which suggested protein denaturation on hydrophobic surfaces. Our study concludes that a negatively charged, smooth, and hydrophilic film surface provides the best environment for enzyme adsorption with desired mass and conformation, maximizing the sensor performance. This knowledge will guide synthetic work aiming to establish close interactions between proteins and electronic materials, which is crucial for developing high-performance enzymatic metabolite biosensors and biocatalytic charge-conversion devices.

12.
ACS Nano ; 16(2): 2682-2689, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107990

RESUMO

Circularly polarized light (CPL) has considerable technological potential, from quantum computing to bioimaging. To maximize the opportunity, high performance photodetectors that can directly distinguish left-handed and right-handed circularly polarized light are needed. Hybrid organic-inorganic perovskites containing chiral organic ligands are an emerging candidate for the active material in CPL photodetecting devices, but current studies suggest there to be a trade-off between the ability to differentially absorb CPL and photocurrent responsivity in chiral perovskites devices. Here, we report a CPL detector based on quasi two-dimensional (quasi-2D) chiral perovskite films. We find it is possible to generate materials where the circular dichroism (CD) is comparable in both 2D and quasi-2D films, while the responsivity of the photodetector improves for the latter. Given this, we are able to showcase a CPL photodetector that exhibits both a high dissymmetry factor of 0.15 and a high responsivity of 15.7 A W-1. We believe our data further advocates the potential of chiral perovskites in CPL-dependent photonic technologies.

13.
Mater Horiz ; 9(1): 500-508, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927646

RESUMO

Molecular doping is the key to enabling organic electronic devices, however, the design strategies to maximize doping efficiency demands further clarity and comprehension. Previous reports focus on the effect of the side chains, but the role of the backbone is still not well understood. In this study, we synthesize a series of NDI-based copolymers with bithiophene, vinylene, and acetylenic moieties (P1G, P2G, and P3G, respectively), all containing branched triethylene glycol side chains. Using computational and experimental methods, we explore the impact of the conjugated backbone using three key parameters for doping in organic semiconductors: energy levels, microstructure, and miscibility. Our experimental results show that P1G undergoes the most efficient n-type doping owed primarily to its higher dipole moment, and better host-dopant miscibility with N-DMBI. In contrast, P2G and P3G possess more planar backbones than P1G, but the lack of long-range order, and poor host-dopant miscibility limit their doping efficiency. Our data suggest that backbone planarity alone is not enough to maximize the electrical conductivity (σ) of n-type doped organic semiconductors, and that backbone polarity also plays an important role in enhancing σ via host-dopant miscibility. Finally, the thermoelectric properties of doped P1G exhibit a power factor of 0.077 µW m-1 K-2, and ultra-low in-plane thermal conductivity of 0.13 W m-1K-1 at 5 mol% of N-DMBI, which is among the lowest thermal conductivity values reported for n-type doped conjugated polymers.

14.
ACS Appl Mater Interfaces ; 13(34): 41094-41101, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410686

RESUMO

Novel methods to synthesize electron-deficient π-conjugated polymers utilizing transition-metal-free coupling reactions for the use of nonfunctionalized monomers are attractive due to their improved atom economy and environmental prospective. Herein we describe the use of iPrMgCl·LiCl complex to afford thiazole-based conjugated polymers in the absence of any transition metal catalyst, that enables access to well-defined polymers with good molecular weights. The mechanistically distinct polymerizations proceeded via nucleophilic aromatic substitution (SNAr) reaction supported by density functional theory (DFT) calculations. This work demonstrates the first example of fully conjugated thiazole-based aromatic homopolymers without the need of any transition metal catalyst.

15.
Chem Mater ; 33(22): 8602-8611, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35359824

RESUMO

The choice of interfacial materials and their properties play a critical role in determining solar cell performance and stability. For compatibility with roll-to-roll printing, it is desirable to develop stable cathode interface layers (CILs) that can be processed over the photoactive layer using orthogonal solvents. In this study, an n-type naphthalene diimide core and oligo (ethylene glycol) side-chain-based conjugated polymer is reported as a universal, efficient CIL for organic and perovskite photovoltaics. Besides good thermal stability and easy processing in alcohol/water, the new CIL is found to possess electron transport properties with an electrical conductivity of 2.3 × 10-6 S cm-1, enabling its use as a CIL with a film thickness of up to ∼35(±2) nm. Utilizing the new CIL, 16% power conversion efficiency (PCE) is achieved for organic solar cells (OSCs) based on the PM6-Y6 photoactive layer (8.9% PCE for no CIL and 15.1% with state-of-the-art CIL, PDINO), and perovskite solar cells from methylammonium lead iodide yielded a PCE of 17.6%. Compared to the reference devices, the new CIL reduced trap-assisted carrier recombination and increased the built-in potential by 80 mV, simultaneously enhancing all photovoltaic parameters. Moreover, new CIL based devices had better photostability with no burn-in losses.

16.
Nat Commun ; 11(1): 3362, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620794

RESUMO

Intrinsically and fully stretchable active-matrix-driven displays are an important element to skin electronics that can be applied to many emerging fields, such as wearable electronics, consumer electronics and biomedical devices. Here, we show for the first time a fully stretchable active-matrix-driven organic light-emitting electrochemical cell array. Briefly, it is comprised of a stretchable light-emitting electrochemical cell array driven by a solution-processed, vertically integrated stretchable organic thin-film transistor active-matrix, which is enabled by the development of chemically-orthogonal and intrinsically stretchable dielectric materials. Our resulting active-matrix-driven organic light-emitting electrochemical cell array can be readily bent, twisted and stretched without affecting its device performance. When mounted on skin, the array can tolerate to repeated cycles at 30% strain. This work demonstrates the feasibility of skin-applicable displays and lays the foundation for further materials development.


Assuntos
Materiais Biomiméticos/química , Elastômeros/química , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Eletroquímica , Éteres/química , Estudos de Viabilidade , Fluorocarbonos/química , Luminescência , Teste de Materiais , Ácidos Polimetacrílicos/química , Pele
17.
Nat Rev Chem ; 4(2): 66-77, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37128048

RESUMO

Organic semiconductors are solution-processable, lightweight and flexible and are increasingly being used as the active layer in a wide range of new technologies. The versatility of synthetic organic chemistry enables the materials to be tuned such that they can be incorporated into biological sensors, wearable electronics, photovoltaics and flexible displays. These devices can be improved by improving their material components, not only by developing the synthetic chemistry but also by improving the analytical and computational techniques that enable us to understand the factors that govern material properties. Judicious molecular design provides control of the semiconductor frontier molecular orbital energy distribution and guides the hierarchical assembly of organic semiconductors into functional films where we can manipulate the properties and motion of charges and excited states. This Review describes how molecular design plays an integral role in developing organic semiconductors for electronic devices in present and emerging technologies.

18.
ACS Appl Mater Interfaces ; 11(51): 48352-48362, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31789014

RESUMO

Four new conjugated microporous polymers (CMPs) were synthesized by a Buchwald-Hartwig (BH) cross-coupling reaction of tri- and tetrafunctionalized precursors to yield materials with tunable surface area and pore size distribution. This approach yielded LPCMP1-4, CMPs with significantly higher Brunauer-Emmett-Teller (BET) surface areas (more than 5 times higher) than other related BH-based CMPs. These CMPs possess not only high BET specific surface areas and high chemical and thermal stabilities, but also exhibit outstanding swellability. To the best of our knowledge, swellable behavior was studied in great detail for CMPs for the first time, with the greatest degree of swelling for methanol reaching 16.5 and 16.3 mL g-1 for LPCMP1 and LPCMP3, respectively. Owing to their excellent swellability, we further studied the adsorption capacity of these CMPs for different toxic organic vapors (including toluene and methanol). LPCMP1 and LPCMP3 adsorbed 124 and 117 mg g-1 toluene, respectively, at saturated vapor pressure. For methanol, the adsorption capacities of LPCMP1 and LPCMP3 were up to 250 and 215 mg g-1, respectively, which are the highest recorded values when compared with published data for CMPs, HCPs, MOFs, and porous carbons. These materials are promising candidates for the removal and elimination of hazardous organic vapors and chemical warfare agents. Moreover, all the polymers show high sensitivity to nitroaromatic explosives. LPCMP2 and LPCMP4 exhibit high selectivity for TNT and may be suitable as new candidates to selectively detect TNT for security or environmental applications.

19.
Nat Commun ; 10(1): 5750, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848336

RESUMO

Metal halide perovskites have emerged as promising photovoltaic materials, but, despite ultralow thermal conductivity, progress on developing them for thermoelectrics has been limited. Here, we report the thermoelectric properties of all-inorganic tin based perovskites with enhanced air stability. Fine tuning the thermoelectric properties of the films is achieved by self-doping through the oxidation of tin (ΙΙ) to tin (ΙV) in a thin surface-layer that transfers charge to the bulk. This separates the doping defects from the transport region, enabling enhanced electrical conductivity. We show that this arises due to a chlorine-rich surface layer that acts simultaneously as the source of free charges and a sacrificial layer protecting the bulk from oxidation. Moreover, we achieve a figure-of-merit (ZT) of 0.14 ± 0.01 when chlorine-doping and degree of the oxidation are optimised in tandem.

20.
Adv Mater ; : e1801079, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022536

RESUMO

Over the past three decades, significant research efforts have focused on improving the charge carrier mobility of organic thin-film transistors (OTFTs). In recent years, a commonly observed nonlinearity in OTFT current-voltage characteristics, known as the "kink" or "double slope," has led to widespread mobility overestimations, contaminating the relevant literature. Here, published data from the past 30 years is reviewed to uncover the extent of the field-effect mobility hype and identify the progress that has actually been achieved in the field of OTFTs. Present carrier-mobility-related challenges are identified, finding that reliable hole and electron mobility values of 20 and 10 cm2 V-1 s-1 , respectively, have yet to be achieved. Based on the analysis, the literature is then reviewed to summarize the concepts behind the success of high-performance p-type polymers, along with the latest understanding of the design criteria that will enable further mobility enhancement in n-type polymers and small molecules, and the reasons why high carrier mobility values have been consistently produced from small molecule/polymer blend semiconductors. Overall, this review brings together important information that aids reliable OTFT data analysis, while providing guidelines for the development of next-generation organic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA