RESUMO
Neisseria meningitidis is a human-restricted bacteria that is a normal nasopharyngeal resident, yet it can also disseminate, causing invasive meningococcal disease. Meningococci are highly adapted to life in humans, with human-specific virulence factors contributing to bacterial adhesion, nutrient acquisition and immune evasion. While these factors have been explored in isolation, their relative contribution during infection has not been considered due to their absence in small animal models and their expression by different human cell types not readily combined in either in vitro or ex vivo systems. Herein, we show that transgenic expression of the iron-binding glycoproteins human transferrin and lactoferrin can each facilitate N. meningitidis replication in mouse serum but that transferrin was required to support infection-induced sepsis. While these host proteins are insufficient to allow nasopharyngeal colonization alone, mice co-expressing these and human CEACAM1 support robust colonization. In this case, meningococcal colonization elicits an acute elevation in both transferrin and lactoferrin levels within the upper respiratory mucosa, with transferrin levels remaining elevated while lactoferrin returns to basal levels after establishment of infection. Competitive infection of triple transgenic animals with transferrin- and lactoferrin- binding protein mutants selects for bacteria expressing the transferrin receptor, implicating the critical contribution of transferrin-based iron acquisition to support colonization. These transgenic animals have thus allowed us to disentangle the relative contribution of three virulence factors during colonization and invasive disease, and provides a novel in vivo model that can support extended meningococcal colonization, opening a new avenue to explore the meningococcal lifestyle within its primary niche.
RESUMO
Neisseria gonorrhoeae is the causative agent of gonorrhea, an on-going public health problem due in part to the lack of success with efforts to develop an efficacious vaccine to prevent this sexually transmitted infection. An attractive candidate vaccine antigen because of its essential function and surface exposure, the gonococcal transferrin binding protein B (TbpB) exhibits high levels of antigenic variability which poses a significant obstacle in evoking a broadly protective vaccine composition. Here, we utilize phylogenetic information to rationally select TbpB variants for inclusion into a potential gonococcal vaccine and identify two TbpB variants that when formulated together elicit a highly cross-reactive antibody response in both rabbits and mice against a diverse panel of TbpB variants and clinically relevant gonococcal strains. Further, this formulation performed well in experimental proxies of real-world usage, including eliciting bactericidal activity against 8 diverse gonococcal strains and decreasing the median duration of colonization after vaginal infection in female mice by two heterologous strains of N. gonorrhoeae . Together, these data support the use of a combination of TbpB variants for a broadly protective gonococcal vaccine.
RESUMO
Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.
Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Doenças dos Bovinos , Septicemia Hemorrágica , Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/imunologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Septicemia Hemorrágica/imunologia , Septicemia Hemorrágica/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Feminino , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , VacinaçãoRESUMO
Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat Neisseria gonorrhoeae, secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs. This study focuses on a cattle pathogen, Moraxella bovis, that expresses the largest anionic domain of the LbpB homologs. We used an exhaustive biophysical approach employing circular dichroism, biolayer interferometry, cross-linking mass spectrometry, microscopy, size-exclusion chromatography with multi-angle light scattering coupled to small-angle X-ray scattering (SEC-MALS-SAXS), and NMR to understand the mechanisms of LbpB-mediated protection against CAPs. We found that the anionic domain of this LbpB displays an α-helical secondary structure but lacks a rigid tertiary fold. The addition of antimicrobial peptides derived from lactoferrin (i.e. lactoferricin) to the anionic domain of LbpB or full-length LbpB results in the formation of phase-separated droplets of LbpB together with the antimicrobial peptides. The droplets displayed a low rate of diffusion, suggesting that CAPs become trapped inside and are no longer able to kill bacteria. Our data suggest that pathogens, like M. bovis, leverage anionic intrinsically disordered domains for the broad recognition and neutralization of antimicrobials via the formation of biomolecular condensates.
RESUMO
Introduction: Syphilis, a sexually transmitted infection caused by the spirochete Treponema pallidum (Tp), is resurging globally. Tp's repertoire of outer membrane proteins (OMPs) includes BamA (ß-barrel assembly machinery subunit A/TP0326), a bipartite protein consisting of a 16-stranded ß-barrel with nine extracellular loops (ECLs) and five periplasmic POTRA (polypeptide transport-associated) domains. BamA ECL4 antisera promotes internalization of Tp by rabbit peritoneal macrophages. Methods: Three overlapping BamA ECL4 peptides and a two-stage, phage display strategy, termed "Epivolve" (for epitope evolution) were employed to generate single-chain variable fragments (scFvs). Additionally, antisera generated by immunizing mice and rabbits with BamA ECL4 displayed by a Pyrococcus furiosus thioredoxin scaffold (PfTrxBamA/ECL4). MAbs and antisera reactivities were evaluated by immunoblotting and ELISA. A comparison of murine and rabbit opsonophagocytosis assays was conducted to evaluate the functional ability of the Abs (e.g., opsonization) and validate the mouse assay. Sera from Tp-infected mice (MSS) and rabbits (IRS) were evaluated for ECL4-specific Abs using PfTrxBamA/ECL4 and overlapping ECL4 peptides in immunoblotting and ELISA assays. Results: Each of the five mAbs demonstrated reactivity by immunoblotting and ELISA to nanogram amounts of PfTrxBamA/ECL4. One mAb, containing a unique amino acid sequence in both the light and heavy chains, showed activity in the murine opsonophagocytosis assay. Mice and rabbits hyperimmunized with PfTrxBamA/ECL4 produced opsonic antisera that strongly recognized the ECL presented in a heterologous scaffold and overlapping ECL4 peptides, including S2. In contrast, Abs generated during Tp infection of mice and rabbits poorly recognized the peptides, indicating that S2 contains a subdominant epitope. Discussion: Epivolve produced mAbs target subdominant opsonic epitopes in BamA ECL4, a top syphilis vaccine candidate. The murine opsonophagocytosis assay can serve as an alternative model to investigate the opsonic potential of vaccinogens. Detailed characterization of BamA ECL4-specific Abs provided a means to dissect Ab responses elicited by Tp infection.
Assuntos
Bacteriófagos , Sífilis , Camundongos , Animais , Coelhos , Treponema pallidum , Anticorpos Monoclonais , Soros Imunes , EpitoposRESUMO
Pasteurella multocida can infect a multitude of wild and domesticated animals, with infections in cattle resulting in hemorrhagic septicemia (HS) or contributing to bovine respiratory disease (BRD) complex. Current cattle vaccines against P. multocida consist of inactivated bacteria, which only offer limited and serogroup specific protection. Here, we describe a newly identified surface lipoprotein, PmSLP, that is present in nearly all annotated P. multocida strains isolated from cattle. Bovine associated variants span three of the four identified phylogenetic clusters, with PmSLP-1 and PmSLP-2 being restricted to BRD associated isolates and PmSLP-3 being restricted to isolates associated with HS. Recombinantly expressed, soluble PmSLP-1 (BRD-PmSLP) and PmSLP-3 (HS-PmSLP) vaccines were both able to provide full protection in a mouse sepsis model against the matched P. multocida strain, however no cross-protection and minimal serum IgG cross-reactivity was identified. Full protection against both challenge strains was achieved with a bivalent vaccine containing both BRD-PmSLP and HS-PmSLP, with serum IgG from immunized mice being highly reactive to both variants. Year-long stability studies with lyophilized antigen stored under various temperatures show no appreciable difference in biophysical properties or loss of efficacy in the mouse challenge model. PmSLP-1 and PmSLP-3 vaccines were each evaluated for immunogenicity in two independent cattle trials involving animals of different age ranges and breeds. In all four trials, vaccination with PmSLP resulted in an increase in antigen specific serum IgG over baseline. In a blinded cattle challenge study with a recently isolated HS strain, the matched HS-PmSLP vaccine showed strong efficacy (75-87.5% survival compared to 0% in the control group). Together, these data suggest that cattle vaccines composed of PmSLP antigens can be a practical and effective solution for preventing HS and BRD related P. multocida infections.
Assuntos
Septicemia Hemorrágica , Infecções por Pasteurella , Pasteurella multocida , Bovinos , Animais , Camundongos , Filogenia , Vacinologia , Vacinas Bacterianas , Septicemia Hemorrágica/microbiologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Modelos Animais de Doenças , Imunoglobulina G , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterináriaRESUMO
Iron is an essential element for various lifeforms but is largely insoluble due to the oxygenation of Earth's atmosphere and oceans during the Proterozoic era. Metazoans evolved iron transport glycoproteins, like transferrin (Tf) and lactoferrin (Lf), to keep iron in a non-toxic, usable form, while maintaining a low free iron concentration in the body that is unable to sustain bacterial growth. To survive on the mucosal surfaces of the human respiratory tract where it exclusively resides, the Gram-negative bacterial pathogen Moraxella catarrhalis utilizes surface receptors for acquiring iron directly from human Tf and Lf. The receptors are comprised of a surface lipoprotein to capture iron-loaded Tf or Lf and deliver it to a TonB-dependent transporter (TBDT) for removal of iron and transport across the outer membrane. The subsequent transport of iron into the cell is normally mediated by a periplasmic iron-binding protein and inner membrane transport complex, which has yet to be determined for Moraxella catarrhalis. We identified two potential periplasm to cytoplasm transport systems and performed structural and functional studies with the periplasmic binding proteins (FbpA and AfeA) to evaluate their role. Growth studies with strains deleted in the fbpA or afeA gene demonstrated that FbpA, but not AfeA, was required for growth on human Tf or Lf. The crystal structure of FbpA with bound iron in the open conformation was obtained, identifying three tyrosine ligands that were required for growth on Tf or Lf. Computational modeling of the YfeA homologue, AfeA, revealed conserved residues involved in metal binding.
Assuntos
Ferro , Lactoferrina , Moraxella catarrhalis , Transferrina , Humanos , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Lactoferrina/metabolismo , Transferrina/metabolismoRESUMO
Acinetobacter baumannii is a human bacterial pathogen of increasing concern in clinical settings due to the emergence of antibiotic resistant strains and the lack of effective therapeutics. Researchers have been exploring new treatment options such as novel drug candidates and vaccines to prevent severe infections and mortality. Bacterial surface antigens that are essential to A. baumannii for acquiring micronutrients (e.g. iron, zinc) from nutrient restricted environments are being considered as targets for vaccines or immunotherapy due to their crucial role for growth and pathogenesis in the human host. BauA, the outer membrane receptor for the siderophore acinetobactin was targeted for vaccine development in this study. Due to challenges in the commercial production of membrane proteins for vaccines, a novel hybrid antigen method developed by our group was used. Exposed loops of BauA were selected and displayed on a foreign scaffold to generate novel hybrid antigens designed to elicit an immune response against the native BauA protein. The potential epitopes were incorporated into a scaffold derived from the C-lobe of Neisseria meningitidis transferrin binding protein B (TbpB), named the loopless C-lobe (LCL). Hybrid proteins displaying three selected loops (5, 7 and 8) individually or in combination were designed and produced and evaluated in an A. baumannii murine sepsis model as vaccine antigens. Immunization with the recombinant BauA protein protected 100% of the mice while immunization with hybrid antigens displaying individual loops achieved between 50 and 100% protection. The LCL scaffold did not induce a protective immune response, enabling us to attribute the observed protection elicited by the hybrid antigens to the displayed loops. Notably, the mice immunized with the hybrid antigen displaying loop 7 were completely protected from infection. Taken together, these results suggest that our hybrid antigen approach is a viable method for generating novel vaccine antigens that target membrane surface proteins necessary for bacterial growth and pathogenesis and the loop 7 hybrid antigen can be a foundation for approaches to combat A. baumannii infections.
Assuntos
Acinetobacter baumannii , Neisseria meningitidis , Animais , Antígenos de Bactérias , Humanos , Imunização , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Recombinantes/metabolismo , Proteína B de Ligação a TransferrinaRESUMO
Acinetobacter baumannii is a common causative agent of nosocomial infections, with a mortality rate of 43% in infected patients. Due to the emergence of multidrug-resistant (MDR) strains, vaccine development has become necessary. Since the 34 kDa outer membrane protein Omp34 has been identified as a potential vaccine target, we implemented a hybrid antigen approach to target its extracellular loops. Using bioinformatic and structural analyses, we selected Loop 3 from Omp34 and displayed it on the loopless C-lobe (LCL) of TbpB of Neisseria meningitidis. The hybrid antigen and the LCL were produced and used to immunize mice for passive and active immunization and challenge experiments in which the reactivity of the sera was assessed by ELISAs, the bacterial load in the tissues measured and the survival of immunized mice compared. LCL was ineffective in immunization against A. baumannii thus the resulting immunity was due to the presence of Omp34 loop 3. It resulted in increased survival and a reduced bacterial load in the tissues compared to the control groups. The findings indicate that the immunogenicity of Omp34 loops can induce protection against A. baumannii infection, and it could probably be used as a vaccine candidate to control the pathogenesis of A. baumannii.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Neisseria meningitidis , Infecções por Acinetobacter/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Imunização , CamundongosRESUMO
The complexity of treating Acinetobacter baumannii infections with the newly developed resistant strains has led researchers to confront this pathogen by developing vaccines. In this study, we used two important virulence factors of A. baumannii to elicit immunity against the A. baumannii. The immunogenic loops were from Baumannii acinetobactin utilization A (BauA) and 34kD outer membrane protein (Omp34). C-lobe derivative of the TbpB surface lipoprotein was used to display the superficial epitopes of the TbpA receptor protein of Neisseria meningitidis. The resulting loopless C-lobe (LCL) with implanted nucleotide sequences of the immunogenic loops from BauA and Omp34 was used as a hybrid antigen. The hybrid antigens were expressed in the E. coli and were used to immunize mice. The mice were challenged with a clinical isolate of A. baumannii (ABI022). Immunization with the hybrid antigens of the BauA loop 7 (BauAL7P3), Omp34 loop 3 Omp34L3P1, and the combination of both loops (BauAL7P3Omp34L3P1) brought about 42.86%, 42.86%, and 71.43% protection against A. baumannii infection. Histopathological findings in the immunized mice showed bronchioles clear from inflammatory cells and normal texture of the spleen and liver. The findings support the use of a multivalent vaccine to induce broadly reactive antibody responses against heterologous A. baumannii strains.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Sepse , Infecções por Acinetobacter/prevenção & controle , Animais , Anticorpos Antibacterianos , Antígenos/metabolismo , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Escherichia coli , Imidazóis , Camundongos , OxazóisRESUMO
A substantial disease burden in vertebrates is due to Gram-negative bacteria that exclusively inhabit the upper respiratory or genitourinary tracts of their hosts and rely on directly acquiring iron from the host iron-binding glycoproteins through surface receptor proteins. The receptors enable these bacteria to proliferate independently from their neighbors on the mucosal surface and during invasive infection of the host. The diversity in these receptors evolved over millions of years of evolution, which thus bodes well for long-lasting vaccine coverage. Experiments in food production animals provide proof of concept for the use of engineered antigens derived from the receptor proteins to prevent colonization and invasive infection in the natural host, strongly supporting development of these vaccines for use in humans.
Assuntos
Transferrina , Vacinas , Animais , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Ferro/metabolismo , Lactoferrina/metabolismo , Receptores de Superfície Celular , Transferrina/metabolismoRESUMO
Metal ion transporters in the outer membrane of gram-negative bacteria that are responsible for acquiring iron and zinc are attractive vaccine targets due to their essential function. The core function is mediated by an integral outer membrane TonB-dependent transporter (TBDT) that mediates the transport of the metal ion across the outer membrane. Some TBDTs also have a surface lipoprotein (SLP) that assists in the efficient capture of the metal ion-containing host protein from which the metal ion is extracted. The challenges in producing the integral outer membrane protein for a commercial subunit vaccine prompted us to develop a hybrid antigen strategy in which surface loops of the TBDT are displayed on the lipoprotein, which can readily be produced as a soluble protein. The focus of this chapter will be on the methods for production of hybrid antigens and evaluating the immune response they elicit.
Assuntos
Bactérias Gram-Negativas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana TransportadorasRESUMO
While developing vaccines targeting surface transferrin receptor proteins in Gram-negative pathogens of humans and food production animals, the common features derived from their evolutionary origins has provided us with insights on how improvements could be implemented in the various stages of research and vaccine development. These pathogens are adapted to live exclusively on the mucosal surfaces of the upper respiratory or genitourinary tract of their host and rely on their receptors to acquire iron from transferrin for survival, indicating that there likely are common mechanisms for delivering transferrin to the mucosal surfaces that should be explored. The modern-day receptors are derived from those present in bacteria that lived over 320 million years ago. The pathogens represent the most host adapted members of their bacterial lineages and may possess factors that enable them to have strong association with the mucosal epithelial cells, thus likely reside in a different niche than the commensal members of the bacterial lineage. The bacterial pathogens normally lead a commensal lifestyle which presents challenges for development of relevant infection models as most infection models either exclude the early stages of colonization or subsequent disease development, and the immune mechanisms at the mucosal surface that would prevent disease are not evident. Development of infection models emulating natural horizontal disease transmission are also lacking. Our aim is to share our insights from the study of pathogens of humans and food production animals with individuals involved in vaccine development, maintaining health or regulation of products in the human and animal health sectors.
Assuntos
Vacinas Bacterianas , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Receptores da Transferrina , Animais , Humanos , Ferro/metabolismo , Receptores da Transferrina/imunologia , Transferrina/metabolismo , Vacinas Bacterianas/imunologia , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterináriaRESUMO
Moraxella catarrhalis is a Gram-negative bacterium that is responsible for a substantial proportion of upper respiratory infections in children and lower respiratory infections in the elderly. Moraxella catarrhalis resides exclusively on the mucosal surfaces of the upper respiratory tract of humans and is capable of directly acquiring iron for growth from the host glycoproteins human transferrin (hTf) and human lactoferrin (hLf). The iron-bound form of these glycoproteins is initially captured by the surface lipoproteins Tf or Lf binding protein B (TbpB or LbpB) and delivered to the integral outer membrane TonB-dependent transport (TBDT) proteins, Tf binding protein A (TbpA) or Lf binding protein A (LbpA). The extraction of iron involves conformational changes in Lf and Tf to facilitate iron removal followed by its transport across the outer membrane by a well characterized process for TBDTs. Surprisingly the disruption of the gene encoding another TBDT, CopB, results in a reduction in the ability to grow on human Tf or Lf. The possibility that this could have been due to an artifact of mutant construction that resulted in the inhibition of TonB-mediated process was eliminated by a complete deletion of the CopB gene. A systematic evaluation of the impact on growth under various conditions by deletions of the genes encoding TbpA, LbpA, and CopB as well as mutations of the iron liganding residues and TonB box region of CopB was implemented. The results indicate that although CopB is capable of effectively acquiring iron from the growth medium, it does not directly acquire iron from Tf or Lf. We propose that the indirect effect on iron transport from Tf and Lf by CopB could possibly be explained by the association of TBDTs at gaps in the peptidoglycan layer that may enhance the efficiency of the process. This concept is supported by previous studies demonstrating an indirect effect on growth of Tf and Lf by deletion of the peptidoglycan binding outer membrane lipoprotein RmpM in Neisseria that also reduced the formation of larger complexes of TBDTs.
RESUMO
Traditional ELISA-based protein analysis has been predicated on the assumption that proteins bind randomly to the solid surface of the ELISA plate polymer (polystyrene or polyvinyl chloride). Random adherence to the plate ensures equal access to all faces of the protein, an important consideration when evaluating immunogenicity of polyclonal serum samples as well as when examining the cross-reactivity of immune serum against different antigenic variants of a protein. In this study we demonstrate that the soluble form of the surface lipoprotein transferrin binding protein B (TbpB) from three different bacterial pathogens (Neisseria meningitidis, Actinobacillus pleuropneumoniae, and Mannheimia haemolytica) bind the ELISA plate in a manner that consistently obscures the transferrin binding face of the proteins' N-lobe. In order to develop a non-biased ELISA where all faces of the protein are accessible, the strong interaction between biotin and avidin has been exploited by adding a biotin tag to these proteins during Escherichia coli-based cytoplasmic expression and utilizing streptavidin or neutravidin coated ELISA plates for protein capture and display. The use of avidin coated ELISA plates also allows for rapid purification of biotin-tagged proteins from crude E. coli lysates, removing the requirement of prior affinity purification of each protein to be included in the ELISA-based analyses. In proof of concept experiments we demonstrate the utility of this approach for evaluating immunogenicity and cross-reactivity of serum from mice and pigs immunized with TbpBs from human and porcine pathogens.
Assuntos
Actinobacillus pleuropneumoniae/química , Ensaio de Imunoadsorção Enzimática , Mannheimia haemolytica/química , Neisseria meningitidis/química , Proteína B de Ligação a Transferrina/imunologia , Actinobacillus pleuropneumoniae/imunologia , Avidina/química , Avidina/imunologia , Biotina/química , Biotina/imunologia , Mannheimia haemolytica/imunologia , Neisseria meningitidis/imunologia , Poliestirenos/química , Cloreto de Polivinila/química , Proteína B de Ligação a Transferrina/químicaRESUMO
In this short review, we outline the major events that led to the development of iron acquisition systems in Gram-negative bacteria and mammals since the beginning of life on earth. Naturally, the interaction between these organisms led to the development of a wonderfully complex set of protein systems used for competition over a once prevalent (but no longer) biocatalytic cofactor. These events led to the appearance of the lactoferrin gene, which has since been exploited into adopting countless new functions, including the provision of highly bactericidal degradation products. In parallel to lactoferrin's evolution, evolving bacterial receptors have countered the bactericidal properties of this innate immunity protein.
Assuntos
Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Lactoferrina/genética , Lactoferrina/metabolismoRESUMO
Acinetobacter baumannii is an important human pathogen causing substantial mortality in hospitalized patients for which treatment with antibiotics has become problematic due to growing antibiotic resistance. In an attempt to develop alternative strategies for dealing with these serious infections surface antigens are being considered as targets for vaccines or immunotherapy. The surface receptor proteins required for zinc acquisition in Gram-negative bacterial pathogens have been proposed as vaccine targets due to their crucial role for growth in the human host. In this study we selected the putative ZnuD outer membrane receptor from A. baumannii as a target for vaccine development. Due to challenges in production of an integral outer membrane protein for vaccine production, we adopted a recently described hybrid antigen approach in which surface epitopes from the Neisseria meningitidis TbpA receptor protein were displayed on a derivative of the C-lobe of the surface lipoprotein TbpB, named the loopless C-lobe (LCL). A structural model for ZnuD was generated and four surface loops were selected for hybrid antigen production by computational approaches. Hybrid antigens were designed displaying the four selected loops (2, 5, 7, and 11) individually or together in a single hybrid antigen. The hybrid antigens along with ZnuD and the LCL scaffold were produced in the E. coli cytoplasm either as soluble antigens or as inclusion bodies, that were used to generate soluble antigens upon refolding. Mice were immunized with the hybrid antigens, ZnuD or LCL and then used in an A. baumannii sepsis model to evaluate their ability to protect against infection. As expected, the LCL scaffold did not induce a protective immune response, enabling us to attribute observed protection to the displayed loops. Immunization with the refolded ZnuD protein protected 63% of the mice while immunization with hybrid antigens displaying individual loops achieved between 25 and 50% protection. Notably, the mice immunized with the hybrid antigen displaying the four loops were completely protected from infection.
Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Infecções por Acinetobacter/prevenção & controle , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Camundongos , Engenharia de Proteínas/métodosRESUMO
The surface transferrin receptor proteins from Neisseria gonorrhoeae have been recognized as ideal vaccine targets due to their critical role in survival in the human male genitourinary tract. Recombinant forms of the surface lipoprotein component of the receptor, transferrin binding protein B (TbpB), can be readily produced at high levels in the Escherichia coli cytoplasm and is suitable for commercial vaccine production. In contrast, the integral outer membrane protein, transferrin binding protein A (TbpA), is produced at relatively low levels in the outer membrane and requires detergents for solubilization and stabilization, processes not favorable for commercial applications. Capitalizing on the core ß-barrel structural feature common to the lipoprotein and integral outer membrane protein we engineered the lipoprotein as a scaffold for displaying conserved surface epitopes from TbpA. A stable version of the C-terminal domain of TbpB was prepared by replacing four larger exposed variable loops with short linking peptide regions. Four surface regions from the plug and barrel domains of Neisseria TbpA were transplanted onto this TbpB C-lobe scaffold, generating stable hybrid antigens. Antisera generated in mice and rabbits against the hybrid antigens recognized TbpA at the surface of Neisseria meningitidis and inhibited transferrin-dependent growth at levels comparable or better than antisera directed against the native TbpA protein. Two of the engineered hybrid antigens each elicited a TbpA-specific bactericidal antibody response comparable to that induced by TbpA. A hybrid antigen generated using a foreign scaffold (TbpB from the pig pathogen Haemophilus parasuis) displaying neisserial TbpA loop 10 was evaluated in a model of lower genital tract colonization by N. gonorrhoeae and a model of invasive infection by N. meningitidis. The loop 10 hybrid antigen was as effective as full length TbpA in eliminating N. gonorrhoeae from the lower genital tract of female mice and was protective against the low dose invasive infection by N. meningitidis. These results demonstrate that TbpB or its derivatives can serve as an effective scaffold for displaying surface epitopes of integral outer membrane antigens and these antigens can elicit protection against bacterial challenge.
Assuntos
Neisseria gonorrhoeae/imunologia , Neisseria meningitidis/imunologia , Ligação Proteica/imunologia , Proteína A de Ligação a Transferrina/imunologia , Proteína B de Ligação a Transferrina/imunologia , Transferrina/imunologia , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Sítios de Ligação/imunologia , Feminino , Gonorreia/imunologia , Ferro/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Alinhamento de Sequência , SuínosRESUMO
Structure-based approaches to the delineation of immunogens for vaccine development have a throughput requirement that is difficult to meet in practice with conventional methods of structure determination. Here we present a strategy for rapid and accurate structure generation in support of antigen engineering programs. The approach is developed around the modeling of interactions between host transferrin (Tf) and the bacterial vaccine target transferrin binding protein B (TbpB) from Gram-negative pathogens such as Neisseria meningitidis. Using an approach based solely on cross-linking mass spectrometry (XL-MS) data, monomeric structural models, and the Integrative Modeling Platform (IMP), we demonstrate that converged representations of the Tf:TbpB interactions can be returned that accurately reflect the binding interface and the relative orientation of the monomeric units, with the capacity to scale to the analysis of interactions from any number of additional strains. We show that a key element to accurate modeling involves the application of hetero-bifunctional cross-linkers incorporating fast-acting photoactivatable diazirines coupled with conventional amine-targeting N-hydroxysuccinimide esters, and we demonstrate that conventional homo-bifunctional reagents used in cross-linking kinetically trap dynamic states in the ensemble. Therefore, the application of both classes of cross-linker provides an opportunity to empirically detect protein dynamics during integrative structural modeling.
Assuntos
Proteínas de Bactérias/imunologia , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Receptores da Transferrina/imunologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/imunologia , Reagentes de Ligações Cruzadas/efeitos da radiação , Bactérias Gram-Negativas , Modelos Moleculares , Neisseria meningitidis , Receptores da Transferrina/metabolismo , Proteína B de Ligação a Transferrina/imunologia , Proteína B de Ligação a Transferrina/metabolismoRESUMO
A number of important Gram-negative pathogens that reside exclusively in the upper respiratory or genitourinary tract of their mammalian host rely on surface receptors that specifically bind host transferrin and lactoferrin as a source of iron for growth. The transferrin receptors have been targeted for vaccine development due to their critical role in acquiring iron during invasive infection and for survival on the mucosal surface. In this study, we focus on the lactoferrin receptors, determining their prevalence in pathogenic bacteria and comparing their prevalence in commensal Neisseria to other surface antigens targeted for vaccines; addressing the issue of a reservoir for vaccine escape and impact of vaccination on the microbiome. Since the selective release of the surface lipoprotein lactoferrin binding protein B by the NalP protease in Neisseria meningitidis argues against its utility as a vaccine target, we evaluated the release of outer membrane vesicles, and transferrin and lactoferrin binding in N. meningitidis and Moraxella catarrhalis. The results indicate that the presence of NalP reduces the binding of transferrin and lactoferrin by cells and native outer membrane vesicles, suggesting that NalP may impact all lipoprotein targets, thus this should not exclude lactoferrin binding protein B as a target.