RESUMO
BACKGROUND: [18F]MK-6240 is a neurofibrillary tangles PET radiotracer that has been broadly used in aging and Alzheimer's disease (AD) studies. Majority of [18F]MK-6240 PET studies use dynamic acquisitions longer than 60 min to assess the tracer kinetic parameters. As of today, no consensus has been established on the optimum dynamic PET scan time. In this study, we assess the reproducibility of [18F]MK-6240 quantitative metrics using shortest dynamic PET protocols in cognitively normal subjects. PET metrics were measured through two-tissue compartment model (2TCM) and Logan model to estimate VT and DVR, as well as SUVR from 90 to 120 min (SUVR90 - 120 min) post-tracer injection for brain regions. 2TCM was carried out using the 120 min dynamic coffee break dataset (first scan from 0 to 60 min p.i., second scan from 90 to 120 min p.i.) and then repeated after stepwise shortening it by 5 min. The dynamic scan length that reproduced the 120 min dynamic scans-based VT to within 10% error was defined as the shortest acquisition time (SAT). The SAT SUVR90 - 120 min was deduced from the SAT dataset by extrapolation of each image pixel time-activity curve to 120 min. The reproducibility of the 120 min dynamic scans-based VT2TCM, DVR2TCM, DVRLogan, and SUVR using the SAT was assessed using Passing-Bablock analysis. The limits of reproducibility of each PET metrics were determined using Bland-Altman analysis. RESULTS: A dynamic SAT of 40 min yielded < 10% error in [18F]MK-6240 VT2TCM's for all brain regions, compared to those measured using the 120 min datasets. SAT-based analysis did not show statistically significant systemic or proportional biases in VT2TCM, DVR2TCM, DVRLogan, or SUVR compared to those deduced from the full dynamic dataset of 120 min. A mean difference between the 120 min- and SAT-based analysis of less than 4%, 10%, 15%, and 20% existed in the VT2TCM, DVR2TCM, DVRLogan, and SUVR respectively. CONCLUSION: Kinetic modeling of [18F]MK-6240 PET can be accurately performed using dynamic scan times as short as 40 min. This can facilitate studies with [18F]MK-6240 PET and improve patients accrual. Further work would be necessary to confirm the reproducibility of these results for patients in dementia spectra.
RESUMO
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
RESUMO
ABSTRACT Introduction: Prostate cancer (PC) is the second most commonly diagnosed cancer in males. 68Ga-PSMA PET/CT, a non-invasive diagnostic tool to evaluate PC with prostate-specific membrane antigen (PSMA) expression, has emerged as a more accurate alternative to assess disease staging. We aimed to identify predictors of positive 68Ga-PSMA PET and the accuracy of this technique. Materials and methods: Diagnostic accuracy cross-sectional study with prospective and retrospective approaches. We performed a comprehensive literature search on PubMed, Cochrane Library, and Embase database in search of studies including PC patients submitted to radical prostatectomy or radiotherapy with curative intent and presented biochemical recurrence following ASTRO 1996 criteria. A total of 35 studies involving 3910 patients submitted to 68-Ga-PSMA PET were included and independently assessed by two authors: 8 studies on diagnosis, four on staging, and 23 studies on restaging purposes. The significance level was α=0.05. Results: pooled sensitivity and specificity were 0.90 (0.86-0.93) and 0.90 (0.82-0.96), respectively, for diagnostic purposes; as for staging, pooled sensitivity and specificity were 0.93 (0.86-0.98) and 0.96 (0.92-0.99), respectively. In the restaging scenario, pooled sensitivity and specificity were 0.76 (0.74-0.78) and 0.45 (0.27-0.58), respectively, considering the identification of prostate cancer in each described situation. We also obtained specificity and sensitivity results for PSA subdivisions. Conclusion: 68Ga-PSMA PET provides higher sensitivity and specificity than traditional imaging for prostate cancer.
Assuntos
Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Estudos Transversais , Estudos Prospectivos , Estudos Retrospectivos , Compostos Radiofarmacêuticos , Tomografia por Emissão de PósitronsRESUMO
INTRODUCTION: Prostate cancer (PC) is the second most commonly diagnosed cancer in males. 68Ga-PSMA PET/CT, a non-invasive diagnostic tool to evaluate PC with prostate-specific membrane antigen (PSMA) expression, has emerged as a more accurate alternative to assess disease staging. We aimed to identify predictors of positive 68Ga-PSMA PET and the accuracy of this technique. MATERIALS AND METHODS: Diagnostic accuracy cross-sectional study with prospective and retrospective approaches. We performed a comprehensive literature search on PubMed, Cochrane Library, and Embase database in search of studies including PC patients submitted to radical prostatectomy or radiotherapy with curative intent and presented biochemical recurrence following ASTRO 1996 criteria. A total of 35 studies involving 3910 patients submitted to 68-Ga-PSMA PET were included and independently assessed by two authors: 8 studies on diagnosis, four on staging, and 23 studies on restaging purposes. The significance level was α=0.05. RESULTS: pooled sensitivity and specificity were 0.90 (0.86-0.93) and 0.90 (0.82-0.96), respectively, for diagnostic purposes; as for staging, pooled sensitivity and specificity were 0.93 (0.86-0.98) and 0.96 (0.92-0.99), respectively. In the restaging scenario, pooled sensitivity and specificity were 0.76 (0.74-0.78) and 0.45 (0.27-0.58), respectively, considering the identification of prostate cancer in each described situation. We also obtained specificity and sensitivity results for PSA subdivisions. CONCLUSION: 68Ga-PSMA PET provides higher sensitivity and specificity than traditional imaging for prostate cancer.