Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
2.
Adv Mater ; : e2312326, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389502

RESUMO

Clinical treatment of cancer commonly incorporates X-ray radiation therapy (XRT), and developing spatially precise radiation-activatable drug delivery strategies may improve XRT efficacy while limiting off-target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X-ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticle Drug Depot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off-target toxicity. As a proof-of-principle, SciDD is used to deliver a microtubule-destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT-mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.

3.
Phys Med Biol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324902

RESUMO

OBJECTIVE: Clinical outcomes after proton therapy have shown some variability that is not fully understood. Different approaches have been suggested to explain the biological outcome, but none has yet provided a comprehensive and satisfactory rationale for observed toxicities. The relatively recent transition from passive scattering (PS) to pencil beam scanning (PBS) treatments has significantly increased the voxel-wise dose rate in proton therapy. In addition, the dose rate distribution is no longer uniform along the cross section of the target but rather highly heterogeneous, following the spot placement. We suggest investigating dose rate as potential contributor to a more complex proton RBE model. Approach. Due to the time structure of the PBS beam delivery the instantaneous dose rate is highly variable voxel by voxel. Several possible parameters to represent voxel-wise dose rate for a given clinical PBS treatment plan are detailed. These quantities were implemented in the scripting environment of our treatment planning system, and computations experimentally verified. Sample applications to treated patient plans are shown. Main Results. Computed dose rates we experimentally confirmed. Dose rate maps vary depending on which method is used to represent them. Mainly, the underlying time and dose intervals chosen determine the topography of the resultant distributions. The maximum dose rates experienced by any target voxel in a given PBS treatment plan in our system range from ~100 to ~450 Gy(RBE)/min, a factor of 10 - 100 increase compared to PS. These dose rate distributions are very heterogeneous, with distinct hot spots. Significance. Voxel-wise dose rates for current clinical PBS treatment plans vary greatly from clinically established practice with PS. The exploration of different dose rate measures to evaluate potential correlations with observed clinical outcomes is suggested, potentially adding a missing component in the understanding of proton RBE.

4.
Med Phys ; 51(1): 670-681, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36939370

RESUMO

BACKGROUND: Ultra-high dose rate (FLASH) radiation has been reported to efficiently suppress tumor growth while sparing normal tissue; however, the mechanism of the differential tissue sparing effect is still not known. Oxygen has long been known to profoundly impact radiobiological responses, and radiolytic oxygen depletion has been considered to be a possible cause or contributor to the FLASH phenomenon. PURPOSE: This work investigates the impact of tissue pO2 profiles, oxygen depletion per unit dose (g), and the oxygen concentration yielding half-maximum radiosensitization (the average of its maximum value and one) (k) in tumor and normal tissue. METHODS: We developed a model that considers the dependent relationship between oxygen depletion and change of radiosensitivity by FLASH irradiation. The model assumed that FLASH irradiation depletes intracellular oxygen more rapidly than it diffuses into the cell from the extracellular environment. Cell survival was calculated based on the linear quadratic-linear model and the radiosensitivity related parameters were adjusted in 1 Gy increments of the administered dose. The model reproduced published experimental data that were obtained with different cell lines and oxygen concentrations, and was used to analyze the impact of parameter uncertainties on the radiobiological responses. This study expands the oxygen depletion analysis of FLASH to normal human tissue and tumor based on clinically determined aggregate and individual patient pO2 profiles. RESULTS: The results show that the pO2 profile is the most essential factor that affects biological response and analyses based on the median pO2 rather than the full pO2 profile can be unreliable and misleading. Additionally, the presence of a small fraction of cells on the threshold of radiobiologic hypoxia substantially alters biological response due to FLASH oxygen depletion. We found that an increment in the k value is generally more protective of tumor than normal tissue due to a higher frequency of lower pO2 values in tumors. Variation in the g value affects the dose at which oxygen depletion impacts response, but does not alter the dose-dependent response trends, if the g value is identical in both tumor and normal tissue. CONCLUSIONS: The therapeutic efficacy of FLASH oxygen depletion is likely patient and tissue-dependent. For breast cancer, FLASH is beneficial in a minority of cases; however, in a subset of well oxygenated tumors, a therapeutic gain may be realized due to induced normal tissue hypoxia.


Assuntos
Neoplasias , Oxigênio , Humanos , Oxigênio/metabolismo , Tolerância a Radiação , Neoplasias/radioterapia , Radiobiologia , Hipóxia
5.
Radiat Res ; 200(6): 509-522, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014593

RESUMO

The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models. In this work we use a standard format for reporting DNA damage to evaluate combinations of different, independently developed, models. We demonstrate the capacity of such inter-comparison to determine the sensitivity of models to both known and implicit assumptions. Specifically, we report on the impact of differences in assumptions regarding patterns of DNA damage induction on predicted initial DSB yield, and the subsequent effects this has on derived DNA repair models. The observed differences highlight the importance of considering initial DNA damage on the scale of nanometres rather than micrometres. We show that the differences in DNA damage models result in subsequent repair models assuming significantly different rates of random DSB end diffusion to compensate. This in turn leads to disagreement on the mechanisms responsible for different biological endpoints, particularly when different damage and repair models are combined, demonstrating the importance of inter-model comparisons to explore underlying model assumptions.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Dano ao DNA , Quebras de DNA de Cadeia Dupla , Simulação por Computador
6.
J Nucl Med ; 64(12): 1956-1964, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857502

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic malignancy (5-y overall survival rate, 46%). OC is generally detected when it has already spread to the peritoneal cavity (peritoneal carcinomatosis). This study investigated whether gadolinium-based nanoparticles (Gd-NPs) increase the efficacy of targeted radionuclide therapy using [177Lu]Lu-DOTA-trastuzumab (an antibody against human epidermal growth factor receptor 2). Gd-NPs have radiosensitizing effects in conventional external-beam radiotherapy and have been tested in clinical phase II trials. Methods: First, the optimal activity of [177Lu]Lu-DOTA-trastuzumab (10, 5, or 2.5 MBq) combined or not with 10 mg of Gd-NPs (single injection) was investigated in athymic mice bearing intraperitoneal OC cell (human epidermal growth factor receptor 2-positive) tumor xenografts. Next, the therapeutic efficacy and toxicity of 5 MBq of [177Lu]Lu-DOTA-trastuzumab with Gd-NPs (3 administration regimens) were evaluated. NaCl, trastuzumab plus Gd-NPs, and [177Lu]Lu-DOTA-trastuzumab alone were used as controls. Biodistribution and dosimetry were determined, and Monte Carlo simulation of energy deposits was performed. Lastly, Gd-NPs' subcellular localization and uptake, and the cytotoxic effects of the combination, were investigated in 3 cancer cell lines to obtain insights into the involved mechanisms. Results: The optimal [177Lu]Lu-DOTA-trastuzumab activity when combined with Gd-NPs was 5 MBq. Moreover, compared with [177Lu]Lu-DOTA-trastuzumab alone, the strongest therapeutic efficacy (tumor mass reduction) was obtained with 2 injections of 5 mg of Gd-NPs/d (separated by 6 h) at 24 and 72 h after injection of 5 MBq of [177Lu]Lu-DOTA-trastuzumab. In vitro experiments showed that Gd-NPs colocalized with lysosomes and that their radiosensitizing effect was mediated by oxidative stress and inhibited by deferiprone, an iron chelator. Exposure of Gd-NPs to 177Lu increased the Auger electron yield but not the absorbed dose. Conclusion: Targeted radionuclide therapy can be combined with Gd-NPs to increase the therapeutic effect and reduce the injected activities. As Gd-NPs are already used in the clinic, this combination could be a new therapeutic approach for patients with ovarian peritoneal carcinomatosis.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Neoplasias Peritoneais , Camundongos , Animais , Humanos , Feminino , Radioisótopos/uso terapêutico , Gadolínio , Neoplasias Peritoneais/radioterapia , Neoplasias Peritoneais/tratamento farmacológico , Distribuição Tecidual , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Radioimunoterapia , Neoplasias Ovarianas/radioterapia , Neoplasias Ovarianas/metabolismo , Lutécio/uso terapêutico , Linhagem Celular Tumoral
7.
Front Oncol ; 13: 1196502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397382

RESUMO

Introduction: DNA damage is the main predictor of response to radiation therapy for cancer. Its Q8 quantification and characterization are paramount for treatment optimization, particularly in advanced modalities such as proton and alpha-targeted therapy. Methods: We present a novel approach called the Microdosimetric Gamma Model (MGM) to address this important issue. The MGM uses the theory of microdosimetry, specifically the mean energy imparted to small sites, as a predictor of DNA damage properties. MGM provides the number of DNA damage sites and their complexity, which were determined using Monte Carlo simulations with the TOPAS-nBio toolkit for monoenergetic protons and alpha particles. Complexity was used together with a illustrative and simplistic repair model to depict the differences between high and low LET radiations. Results: DNA damage complexity distributions were were found to follow a Gamma distribution for all monoenergetic particles studied. The MGM functions allowed to predict number of DNA damage sites and their complexity for particles not simulated with microdosimetric measurements (yF) in the range of those studied. Discussion: Compared to current methods, MGM allows for the characterization of DNA damage induced by beams composed of multi-energy components distributed over any time configuration and spatial distribution. The output can be plugged into ad hoc repair models that can predict cell killing, protein recruitment at repair sites, chromosome aberrations, and other biological effects, as opposed to current models solely focusing on cell survival. These features are particularly important in targeted alpha-therapy, for which biological effects remain largely uncertain. The MGM provides a flexible framework to study the energy, time, and spatial aspects of ionizing radiation and offers an excellent tool for studying and optimizing the biological effects of these radiotherapy modalities.

8.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190197

RESUMO

Ultra-high dose rate irradiation has been reported to protect normal tissues more than conventional dose rate irradiation. This tissue sparing has been termed the FLASH effect. We investigated the FLASH effect of proton irradiation on the intestine as well as the hypothesis that lymphocyte depletion is a cause of the FLASH effect. A 16 × 12 mm2 elliptical field with a dose rate of ~120 Gy/s was provided by a 228 MeV proton pencil beam. Partial abdominal irradiation was delivered to C57BL/6j and immunodeficient Rag1-/-/C57 mice. Proliferating crypt cells were counted at 2 days post exposure, and the thickness of the muscularis externa was measured at 280 days following irradiation. FLASH irradiation did not reduce the morbidity or mortality of conventional irradiation in either strain of mice; in fact, a tendency for worse survival in FLASH-irradiated mice was observed. There were no significant differences in lymphocyte numbers between FLASH and conventional-dose-rate mice. A similar number of proliferating crypt cells and a similar thickness of the muscularis externa following FLASH and conventional dose rate irradiation were observed. Partial abdominal FLASH proton irradiation at 120 Gy/s did not spare normal intestinal tissue, and no difference in lymphocyte depletion was observed. This study suggests that the effect of FLASH irradiation may depend on multiple factors, and in some cases dose rates of over 100 Gy/s do not induce a FLASH effect and can even result in worse outcomes.

9.
Phys Med Biol ; 68(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201533

RESUMO

Objective. The TOPAS-nBio Monte Carlo track structure simulation code, a wrapper of Geant4-DNA, was extended for its use in pulsed and longtime homogeneous chemistry simulations using the Gillespie algorithm.Approach. Three different tests were used to assess the reliability of the implementation and its ability to accurately reproduce published experimental results: (1) a simple model with a known analytical solution, (2) the temporal evolution of chemical yields during the homogeneous chemistry stage, and (3) radiolysis simulations conducted in pure water with dissolved oxygen at concentrations ranging from 10µM to 1 mM with [H2O2] yields calculated for 100 MeV protons at conventional and FLASH dose rates of 0.286 Gy s-1and 500 Gy s-1, respectively. Simulated chemical yield results were compared closely with data calculated using the Kinetiscope software which also employs the Gillespie algorithm.Main results. Validation results in the third test agreed with experimental data of similar dose rates and oxygen concentrations within one standard deviation, with a maximum of 1% difference for both conventional and FLASH dose rates. In conclusion, the new implementation of TOPAS-nBio for the homogeneous long time chemistry simulation was capable of recreating the chemical evolution of the reactive intermediates that follow water radiolysis.Significance. Thus, TOPAS-nBio provides a reliable all-in-one chemistry simulation of the physical, physico-chemical, non-homogeneous, and homogeneous chemistry and could be of use for the study of FLASH dose rate effects on radiation chemistry.


Assuntos
Peróxido de Hidrogênio , Transferência Linear de Energia , Reprodutibilidade dos Testes , Prótons , Método de Monte Carlo , Água/química
10.
Int J Radiat Oncol Biol Phys ; 116(5): 1202-1217, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121362

RESUMO

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.


Assuntos
Credenciamento , Elétrons , Humanos , Instalações de Saúde , Posicionamento do Paciente , Tecnologia , Dosagem Radioterapêutica
11.
Phys Med Biol ; 68(8)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930985

RESUMO

Objective. The TOol for PArticle Simulation (TOPAS) is a Geant4-based Monte Carlo software application that has been used for both research and clinical studies in medical physics. So far, most users of TOPAS have focused on radiotherapy-related studies, such as modeling radiation therapy delivery systems or patient dose calculation. Here, we present the first set of TOPAS extensions to make it easier for TOPAS users to model medical imaging systems.Approach. We used the extension system of TOPAS to implement pre-built, user-configurable geometry components such as detectors (e.g. flat-panel and multi-planar detectors) for various imaging modalities and pre-built, user-configurable scorers for medical imaging systems (e.g. digitizer chain).Main results. We developed a flexible set of extensions that can be adapted to solve research questions for a variety of imaging modalities. We then utilized these extensions to model specific examples of cone-beam CT (CBCT), positron emission tomography (PET), and prompt gamma (PG) systems. The first of these new geometry components, the FlatImager, was used to model example CBCT and PG systems. Detected signals were accumulated in each detector pixel to obtain the intensity of x-rays penetrating objects or prompt gammas from proton-nuclear interaction. The second of these new geometry components, the RingImager, was used to model an example PET system. Positron-electron annihilation signals were recorded in crystals of the RingImager and coincidences were detected. The simulated data were processed using corresponding post-processing algorithms for each modality and obtained results in good agreement with the expected true signals or experimental measurement.Significance. The newly developed extension is a first step to making it easier for TOPAS users to build and simulate medical imaging systems. Together with existing TOPAS tools, this extension can help integrate medical imaging systems with radiotherapy simulations for image-guided radiotherapy.


Assuntos
Software , Tomografia Computadorizada por Raios X , Humanos , Simulação por Computador , Prótons , Algoritmos , Método de Monte Carlo
12.
Phys Med Biol ; 68(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36731139

RESUMO

Objective. Irradiation at FLASH dose rates (>40 Gy s-1) has received great attention due to its reported normal tissue sparing effect. The FLASH effect was originally observed in electron irradiations but has since been shown to also occur with both photon and proton beams. Several mechanisms have been proposed to explain the tissue sparing at high dose rates, including effects involving oxygen, such as depletion of oxygen within the irradiated cells. In this study, we investigated the protective role of FLASH proton irradiation on the skin when varying the oxygen concentration.Approach. Our double scattering proton system provided a 1.2 × 1.6 cm2elliptical field at a dose rate of ∼130 Gy s-1. The conventional dose rate was ∼0.4 Gy s-1. The legs of the FVB/N mice were marked with two tattooed dots and fixed in a holder for exposure. To alter the skin oxygen concentration, the mice were breathing pure oxygen or had their legs tied to restrict blood flow. The distance between the two dots was measured to analyze skin contraction over time.Main results. FLASH irradiation mitigated skin contraction by 15% compared to conventional dose rate irradiation. The epidermis thickness and collagen deposition at 75 d following 25 to 30 Gy exposure suggested a long-term protective function in the skin from FLASH irradiation. Providing the mice with oxygen or reducing the skin oxygen concentration removed the dose-rate-dependent difference in response.Significance. FLASH proton irradiation decreased skin contraction, epidermis thickness and collagen deposition compared to standard dose rate irradiations. The observed oxygen-dependence of the FLASH effect is consistent with, but not conclusive of, fast oxygen depletion during the exposure.


Assuntos
Terapia com Prótons , Prótons , Camundongos , Animais , Terapia com Prótons/métodos , Oxigênio , Pele , Fótons , Dosagem Radioterapêutica
13.
Int J Radiat Oncol Biol Phys ; 116(5): 1226-1233, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739919

RESUMO

PURPOSE: Radiation-induced lymphopenia has gained attention recently as the result of its correlation with survival in a range of indications, particularly when combining radiation therapy (RT) with immunotherapy. The purpose of this study is to use a dynamic blood circulation model combined with observed lymphocyte depletion in patients to derive the in vivo radiosensitivity of circulating lymphocytes and study the effect of RT delivery parameters. METHODS AND MATERIALS: We assembled a cohort of 17 patients with hepatocellular carcinoma treated with proton RT alone in 15 fractions (fx) using conventional dose rates (beam-on time [BOT], 120 seconds) for whom weekly absolute lymphocyte counts (ALCs) during RT and follow-up were available. We used HEDOS, a time-dependent, whole-body, blood flow computational framework, in combination with explicit liver blood flow modeling, to calculate the dose volume histograms for circulating lymphocytes for changing BOTs (1 second-300 seconds) and fractionations (5 fx, 15 fx). From this, we used the linear cell survival model and an exponential model to determine patient-specific lymphocyte radiation sensitivity, α, and recovery, σ, respectively. RESULTS: The in vivo-derived patient-specific α had a median of 0.65 Gy-1 (range, 0.30-1.38). Decreasing BOT to 1 second led to an increased average end-of-treatment ALC of 27.5%, increasing to 60.3% when combined with the 5-fx regimen. Decreasing to 5 fx at the conventional dose rate led to an increase of 17.0% on average. The benefit of both increasing dose rate and reducing the number of fractions was patient specificࣧpatients with highly sensitive lymphocytes benefited most from decreasing BOT, whereas patients with slow lymphocyte recovery benefited most from the shorter fractionation regimen. CONCLUSIONS: We observed that increasing dose rate at the same fractionation reduced ALC depletion more significantly than reducing the number of fractions. High-dose-rates led to an increased sparing of lymphocytes when shortening the fractionation regimen, particularly for patients with radiosensitive lymphocytes at elevated risk.


Assuntos
Neoplasias Hepáticas , Linfopenia , Terapia com Prótons , Humanos , Prótons , Terapia com Prótons/efeitos adversos , Linfopenia/etiologia , Linfócitos/efeitos da radiação , Neoplasias Hepáticas/radioterapia
14.
Phys Med ; 105: 102508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549067

RESUMO

PURPOSE: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology. METHODS: We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs. RESULTS: By optimizing the model parameters of the TLK model in accordance to the experimental data on V79, we were able to predict both DNA rejoining kinetics at low linear energy transfers (LET) and cell surviving fraction. CONCLUSION: This is the first study to demonstrate the implementation of both the cell surviving fraction and the DNA rejoining kinetics with the estimated initial DNA damage, in a realistic cell geometrical model simulated by full track structure MC simulations at DNA level and for various LET. These simulation and model make the link between mechanistic physical/chemical damage processes and these two specific biological endpoints.


Assuntos
Dano ao DNA , Prótons , Cricetinae , Animais , Sobrevivência Celular , Cinética , DNA/química , Método de Monte Carlo
15.
IEEE Trans Radiat Plasma Med Sci ; 6(3): 252-262, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36092270

RESUMO

Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.

16.
Phys Med Biol ; 67(23)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36172820

RESUMO

The effects of realistic, deep space radiation environments on neuronal function remain largely unexplored.In silicomodeling studies of radiation-induced neuronal damage provide important quantitative information about physico-chemical processes that are not directly accessible through radiobiological experiments. Here, we present the first nano-scale computational analysis of broad-spectrum galactic cosmic ray irradiation in a realistic neuron geometry. We constructed thousands ofin silicorealizations of a CA1 pyramidal neuron, each with over 3500 stochastically generated dendritic spines. We simulated the entire 33 ion-energy beam spectrum currently in use at the NASA Space Radiation Laboratory galactic cosmic ray simulator (GCRSim) using the TOol for PArticle Simulation (TOPAS) and TOPAS-nBio Monte Carlo-based track structure simulation toolkits. We then assessed the resulting nano-scale dosimetry, physics processes, and fluence patterns. Additional comparisons were made to a simplified 6 ion-energy spectrum (SimGCRSim) also used in NASA experiments. For a neuronal absorbed dose of 0.5 Gy GCRSim, we report an average of 250 ± 10 ionizations per micrometer of dendritic length, and an additional 50 ± 10, 7 ± 2, and 4 ± 2 ionizations per mushroom, thin, and stubby spine, respectively. We show that neuronal energy deposition by proton andα-particle tracks declines approximately hyperbolically with increasing primary particle energy at mission-relevant energies. We demonstrate an inverted exponential relationship between dendritic segment irradiation probability and neuronal absorbed dose for each ion-energy beam. We also find that there are no significant differences in the average physical responses between the GCRSim and SimGCRSim spectra. To our knowledge, this is the first nano-scale simulation study of a realistic neuron geometry using the GCRSim and SimGCRSim spectra. These results may be used as inputs to theoretical models, aid in the interpretation of experimental results, and help guide future study designs.


Assuntos
Radiação Cósmica , Radiação Cósmica/efeitos adversos , Radiobiologia/métodos , Simulação por Computador , Método de Monte Carlo , Neurônios
17.
Phys Med Biol ; 67(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35926482

RESUMO

Objective.Monte Carlo (MC) codes are increasingly used for accurate radiotherapy dose calculation. In proton therapy, the accuracy of the dose calculation algorithm is expected to have a more significant impact than in photon therapy due to the depth-dose characteristics of proton beams. However, MC simulations come at a considerable computational cost to achieve statistically sufficient accuracy. There have been efforts to improve computational efficiency while maintaining sufficient accuracy. Among those, parallelizing particle transportation using graphic processing units (GPU) achieved significant improvements. Contrary to the central processing unit, a GPU has limited memory capacity and is not expandable. It is therefore challenging to score quantities with large dimensions requiring extensive memory. The objective of this study is to develop an open-source GPU-based MC package capable of scoring those quantities.Approach.We employed a hash-table, one of the key-value pair data structures, to efficiently utilize the limited memory of the GPU and score the quantities requiring a large amount of memory. With the hash table, only voxels interacting with particles will occupy memory, and we can search the data efficiently to determine their address. The hash-table was integrated with a novel GPU-based MC code, moqui.Main results.The developed code was validated against an MC code widely used in proton therapy, TOPAS, with homogeneous and heterogeneous phantoms. We also compared the dose calculation results of clinical treatment plans. The developed code agreed with TOPAS within 2%, except for the fall-off and regions, and the gamma pass rates of the results were >99% for all cases with a 2 mm/2% criteria.Significance.We can score dose-influence matrix and dose-rate on a GPU for a 3-field H&N case with 10 GB of memory using moqui, which would require more than 100 GB of memory with the conventionally used array data structure.


Assuntos
Terapia com Prótons , Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
18.
Radiother Oncol ; 175: 222-230, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963397

RESUMO

With increasing focus on the translation of the observed FLASH effect into clinical practice, this paper presents treatment planning considerations for its development using proton therapy. Potential requirements to induce a FLASH effect are discussed along with the properties of existing proton therapy delivery systems and the changes in planning and delivery approaches required to satisfy these prerequisites. For the exploration of treatment planning approaches for FLASH, developments in treatment planning systems are needed. Flexibility in adapting to new information will be important in such an evolving area. Variations in definitions, threshold values and assumptions can make it difficult to compare different published studies and to interpret previous studies in the context of new information. Together with the fact that much is left to be understood about the underlying mechanism behind the FLASH effect, a systematic and comprehensive approach to information storage is encouraged. Collecting and retaining more detailed information on planned and realised dose delivery as well as reporting the assumptions made in planning studies creates the potential for research to be revisited and re-evaluated in the light of future improvements in understanding. Forward thinking at the time of study development can help facilitate retrospective analysis. This, we hope, will increase the available evidence and accelerate the translation of the FLASH effect into clinical benefit.


Assuntos
Terapia com Prótons , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos
19.
Commun Biol ; 5(1): 700, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835982

RESUMO

Immunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images. Simulations of the DSB distributions were generated using Monte Carlo track-structure simulation. For each DSB distribution, a corresponding DNA repair process was modelled and the un-repaired DSBs were recorded at several time points. Corresponding microscopy images for both a DSB and (γ-H2AX) fluorescent marker were generated and compared for different microscopes, radiation types and doses. Statistically significant differences in miscounting were found across most of the tested scenarios. These inconsistencies were propagated through to repair kinetics where there was a perceived change between radiation-types. These changes did not reflect the underlying repair rate and were caused by inconsistencies in foci counting. We conclude that these underlying uncertainties must be considered when analysing images of DNA damage markers to ensure differences observed are real and are not caused by non-systematic miscounting.


Assuntos
Reparo do DNA
20.
Phys Med Biol ; 67(14)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714599

RESUMO

Current Monte Carlo simulations of DNA damage have been reported only at ambient temperature. The aim of this work is to use TOPAS-nBio to simulate the yields of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) produced in plasmids under low-LET irradiation incorporating the effect of the temperature changes in the environment. A new feature was implemented in TOPAS-nBio to incorporate reaction rates used in the simulation of the chemical stage of water radiolysis as a function of temperature. The implemented feature was verified by simulating temperature-dependentG-values of chemical species in liquid water from 20 °C to 90 °C. For radiobiology applications, temperature dependent SSB and DSB yields were calculated from 0 °C to 42 °C, the range of available published measured data. For that, supercoiled DNA plasmids dissolved in aerated solutions containing EDTA irradiated by Cobalt-60 gamma-rays were simulated. TOPAS-nBio well reproduced published temperature-dependentG-values in liquid water and the yields of SSB and DSB for the temperature range considered. For strand break simulations, the model shows that the yield of SSB and DSB increased linearly with the temperature at a rate of (2.94 ± 0.17) × 10-10Gy-1Da-1°C-1(R2 = 0.99) and (0.13 ± 0.01) × 10-10Gy-1Da-1°C-1(R2 = 0.99), respectively. The extended capability of TOPAS-nBio is a complementary tool to simulate realistic conditions for a large range of environmental temperatures, allowing refined investigations of the biological effects of radiation.


Assuntos
Dano ao DNA , Água , DNA , Método de Monte Carlo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA