Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Infect Dis ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255068

RESUMO

BACKGROUND: Blood biomarkers of neurological injury could provide a rapid diagnosis of central nervous system (CNS) injury caused by infections. An FDA-approved assay for mild traumatic brain injury (TBI) measures glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which signal astrocyte and neuronal injury, respectively. Here, we assessed the applicability of this biomarker assay for determining infection-induced brain injury. METHODS: We measured serum levels of GFAP and UCH-L1 retrospectively in serum samples from three study populations: 1) human cases infected with Venezuelan equine encephalitis virus (VEEV) and Madariaga virus (MADV) (n = 73), 2) human sepsis patients who were severely ill or diagnosed with encephalitis (n = 66), and 3) sepsis cases that were subsequently evaluated for cognitive impairment (n = 64). RESULTS: In the virus infection group, we found elevated GFAP for VEEV (p = 0.014) and MADV (p = 0.011) infections, which correlated with seizures (p = 0.006). In the bacterial sepsis group, GFAP was elevated in cases diagnosed with encephalitis (p = 0.0007) and correlated with headaches (p = 0.0002). In the bacterial sepsis cases with a later cognitive assessment, elevated GFAP (p = 0.0057) at study enrollment was associated with cognitive impairment six months later with a positive prognostic capacity of 79% (CI: 66-95%; p = 0.0068). CONCLUSIONS: GFAP and UCH-L1 levels measured using an FDA-approved assay for TBI may indicate brain injury resulting from viral or bacterial infections and could predict the development of neurological sequelae.

2.
Front Microbiol ; 15: 1401259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044950

RESUMO

Melioidosis is a potentially severe disease caused by the gram-negative soil-dwelling bacterium called Burkholderia pseudomallei. The true breadth of the distribution of this tropical pathogen is starting to emerge with environmental and clinical isolates frequently characterized in new countries and regions. Even so, isolates, clinical cases, and genetic data from the continent of Africa remain scant. We previously confirmed the presence of B. pseudomallei in the environment of Ghana, unmasking a new area of endemicity for this pathogen. Here, we describe the genetic characteristics of isolates obtained from that environmental survey. Twenty-one isolates were subjected to whole genome sequencing and found to represent three discrete sequence types (ST), one of which was novel, and designated ST2058. Phylogenetic analysis places this novel isolate within a B. pseudomallei clade that includes genomes derived from the Americas, although it is closely related to a sub-clade that includes isolates from Africa. Importantly, phenotypic characterization demonstrates common features including API 20NE profiles and B. pseudomallei CPS to support existing diagnostics, and susceptibility to standard of care antibiotics often used in the clinical management of melioidosis. These findings add to our knowledge about the presence and distribution of B. pseudomallei in Africa and represent the first published genomes out of Ghana.

3.
Commun Med (Lond) ; 4(1): 120, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890515

RESUMO

BACKGROUND: Sepsis from infection is a global health priority and clinical trials have failed to deliver effective therapeutic interventions. To address complicating heterogeneity in sepsis pathobiology, and improve outcomes, promising precision medicine approaches are helping identify disease endotypes, however, they require a more complete definition of sepsis subgroups. METHODS: Here, we use RNA sequencing from peripheral blood to interrogate the host response to sepsis from participants in a global observational study carried out in West Africa, Southeast Asia, and North America (N = 494). RESULTS: We identify four sepsis subtypes differentiated by 28-day mortality. A low mortality immunocompetent group is specified by features that describe the adaptive immune system. In contrast, the three high mortality groups show elevated clinical severity consistent with multiple organ dysfunction. The immunosuppressed group members show signs of a dysfunctional immune response, the acute-inflammation group is set apart by molecular features of the innate immune response, while the immunometabolic group is characterized by metabolic pathways such as heme biosynthesis. CONCLUSIONS: Our analysis reveals details of molecular endotypes in sepsis that support immunotherapeutic interventions and identifies biomarkers that predict outcomes in these groups.


Sepsis is a life-threatening multi-organ failure caused by the body's immune response to infection. Clinical symptoms of sepsis vary from one person to another likely due to differences in host factors, infecting pathogen, and comorbidities. This difference in clinical symptoms may contribute to the lack of effective interventions for sepsis. Therefore, approaches tailored to targeting groups of patients who present similarly are of great interest. This study analysed a large group of sepsis patients with diverse symptoms using laboratory markers and mathematical analysis. We report four patient groups that differ by risk of death and immune response profile. Targeting these defined groups with tailored interventions presents an exciting opportunity to improve the health outcomes of patients with sepsis.

4.
ACS Infect Dis ; 10(6): 2118-2126, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38712884

RESUMO

This study presented the detection and quantification of capsular polysaccharide (CPS) as a biomarker for the diagnosis of melioidosis. After successfully screening four monoclonal antibodies (mAbs) previously determined to bind CPS molecules, the team developed a portable electrochemical immunosensor based on antibody-antigen interactions. The biosensor was able to detect CPS with a wide detection range from 0.1pg/mL to 1 µg/mL. The developed biosensor achieved high sensitivity for the detection of CPS spiked into both urine and serum. The developed assay platform was successfully programmed into a Windows app, and the sensor performance was evaluated with different spiked concentrations. The rapid electro-analytical device (READ) sensor showed great unprecedented sensitivity for the detection of CPS molecules in both serum and urine, and results were cross-validated with ELISA methods.


Assuntos
Burkholderia pseudomallei , Técnicas Eletroquímicas , Melioidose , Polissacarídeos Bacterianos , Burkholderia pseudomallei/imunologia , Melioidose/diagnóstico , Melioidose/microbiologia , Melioidose/urina , Humanos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Polissacarídeos Bacterianos/imunologia , Técnicas Biossensoriais/métodos , Anticorpos Monoclonais/imunologia , Cápsulas Bacterianas/imunologia , Anticorpos Antibacterianos/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Biomarcadores/sangue , Biomarcadores/urina
5.
Nat Commun ; 15(1): 4606, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816375

RESUMO

Our limited understanding of the pathophysiological mechanisms that operate during sepsis is an obstacle to rational treatment and clinical trial design. There is a critical lack of data from low- and middle-income countries where the sepsis burden is increased which inhibits generalized strategies for therapeutic intervention. Here we perform RNA sequencing of whole blood to investigate longitudinal host response to sepsis in a Ghanaian cohort. Data dimensional reduction reveals dynamic gene expression patterns that describe cell type-specific molecular phenotypes including a dysregulated myeloid compartment shared between sepsis and COVID-19. The gene expression signatures reported here define a landscape of host response to sepsis that supports interventions via targeting immunophenotypes to improve outcomes.


Assuntos
COVID-19 , Fenótipo , Sepse , Transcriptoma , Humanos , Sepse/genética , Sepse/sangue , Sepse/imunologia , COVID-19/imunologia , COVID-19/genética , COVID-19/sangue , COVID-19/virologia , Gana/epidemiologia , Masculino , Estudos de Coortes , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Feminino , Adulto , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Análise de Sequência de RNA
6.
Front Microbiol ; 15: 1387208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659991

RESUMO

Infection with either Rickettsia prowazekii or Orientia tsutsugamushi is common, yet diagnostic capabilities are limited due to the short window for positive identification. Until now, although targeted enrichment had been applied to increase sensitivity of sequencing-based detection for various microorganisms, it had not been applied to sequencing of R. prowazekii in clinical samples. Additionally, hybridization-based targeted enrichment strategies had only scarcely been applied to qPCR of any pathogens in clinical samples. Therefore, we tested a targeted enrichment technique as a proof of concept and found that it dramatically reduced the limits of detection of these organisms by both qPCR and high throughput sequencing. The enrichment methodology was first tested in contrived clinical samples with known spiked-in concentrations of R. prowazekii and O. tsutsugamushi DNA. This method was also evaluated using clinical samples, resulting in the simultaneous identification and characterization of O. tsutsugamushi directly from clinical specimens taken from sepsis patients. We demonstrated that the targeted enrichment technique is helpful by lowering the limit of detection, not only when applied to sequencing, but also when applied to qPCR, suggesting the technique could be applied more broadly to include other assays and/or microbes for which there are limited diagnostic or detection modalities.

7.
Sci Rep ; 13(1): 22554, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110534

RESUMO

Diagnostic limitations challenge management of clinically indistinguishable acute infectious illness globally. Gene expression classification models show great promise distinguishing causes of fever. We generated transcriptional data for a 294-participant (USA, Sri Lanka) discovery cohort with adjudicated viral or bacterial infections of diverse etiology or non-infectious disease mimics. We then derived and cross-validated gene expression classifiers including: 1) a single model to distinguish bacterial vs. viral (Global Fever-Bacterial/Viral [GF-B/V]) and 2) a two-model system to discriminate bacterial and viral in the context of noninfection (Global Fever-Bacterial/Viral/Non-infectious [GF-B/V/N]). We then translated to a multiplex RT-PCR assay and independent validation involved 101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF-B/V model discriminated bacterial from viral infection in the discovery cohort an area under the receiver operator curve (AUROC) of 0.93. Validation in an independent cohort demonstrated the GF-B/V model had an AUROC of 0.84 (95% CI 0.76-0.90) with overall accuracy of 81.6% (95% CI 72.7-88.5). Performance did not vary with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and viral illness across global sites with diverse endemic pathogens.


Assuntos
Infecções Bacterianas , Viroses , Humanos , Viroses/diagnóstico , Viroses/genética , Biomarcadores , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/genética , Camboja , Austrália
8.
MSMR ; 30(9): 11-16, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844170

RESUMO

On an annual basis, approximately 2,500 U.S. Marines and Sailors deploy to Australia on 6-month training rotations. Active duty personnel are generally immunologically naïve to pathogens endemic to tropical Australia, a vulnerability that could significantly impact medical readiness. To estimate risk, we screened 628 post-deployment serum samples by ELISA for serological evidence of infection with Ross River virus (RRV), a mosquito-borne alphavirus endemic to tropical Australia. Samples that tested above the negative cutoff value were paired with their pre-deployment samples to identify deployment-related seroconversion. These paired samples were further investigated with a live virus neutralization assay to assess specificity. There was a single RRV seroconversion and 49 false-positive results. In the context of these analyses (i.e., limited sample numbers collected between the months of March and October), we assess the RRV risk to MRFD as low and encourage strategies such as avoiding and preventing mosquito bites to mitigate the existing risk over widespread vaccination programs, if an FDA-approved vaccine becomes available. The Panbio RRV ELISA lacks the specificity to draw conclusions based on seropositivity from large-scale surveys of U.S. personnel.


Assuntos
Infecções por Alphavirus , Militares , Animais , Humanos , Austrália/epidemiologia , Infecções por Alphavirus/epidemiologia , Ross River virus , Ensaio de Imunoadsorção Enzimática
9.
BMJ Open ; 13(2): e067840, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806137

RESUMO

OBJECTIVES: We evaluated the performance of commonly used sepsis screening tools across prospective sepsis cohorts in the USA, Cambodia and Ghana. DESIGN: Prospective cohort studies. SETTING AND PARTICIPANTS: From 2014 to 2021, participants with two or more SIRS (Systemic Inflammatory Response Syndrome) criteria and suspected infection were enrolled in emergency departments and medical wards at hospitals in Cambodia and Ghana and hospitalised participants with suspected infection were enrolled in the USA. Cox proportional hazards regression was performed, and Harrell's C-statistic calculated to determine 28-day mortality prediction performance of the quick Sequential Organ Failure Assessment (qSOFA) score ≥2, SIRS score ≥3, National Early Warning Score (NEWS) ≥5, Modified Early Warning Score (MEWS) ≥5 or Universal Vital Assessment (UVA) score ≥2. Screening tools were compared with baseline risk (age and sex) with the Wald test. RESULTS: The cohorts included 567 participants (42.9% women) including 187 participants from Kumasi, Ghana, 200 participants from Takeo, Cambodia and 180 participants from Durham, North Carolina in the USA. The pooled mortality was 16.4% at 28 days. The mortality prediction accuracy increased from baseline risk with the MEWS (C-statistic: 0.63, 95% CI 0.58 to 0.68; p=0.002), NEWS (C-statistic: 0.68; 95% CI 0.64 to 0.73; p<0.001), qSOFA (C-statistic: 0.70, 95% CI 0.64 to 0.75; p<0.001), UVA score (C-statistic: 0.73, 95% CI 0.69 to 0.78; p<0.001), but not with SIRS (0.60; 95% CI 0.54 to 0.65; p=0.13). Within individual cohorts, only the UVA score in Ghana performed better than baseline risk (C-statistic: 0.77; 95% CI 0.71 to 0.83; p<0.001). CONCLUSIONS: Among the cohorts, MEWS, NEWS, qSOFA and UVA scores performed better than baseline risk, largely driven by accuracy improvements in Ghana, while SIRS scores did not improve prognostication accuracy. Prognostication scores should be validated within the target population prior to clinical use.


Assuntos
Sepse , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Camboja , Estudos de Coortes
10.
Sci Rep ; 12(1): 22471, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577783

RESUMO

The associations between clinical phenotypes of coronavirus disease 2019 (COVID-19) and the host inflammatory response during the transition from peak illness to convalescence are not yet well understood. Blood plasma samples were collected from 129 adult SARS-CoV-2 positive inpatient and outpatient participants between April 2020 and January 2021, in a multi-center prospective cohort study at 8 military hospitals across the United States. Plasma inflammatory protein biomarkers were measured in samples from 15 to 28 days post symptom onset. Topological Data Analysis (TDA) was used to identify patterns of inflammation, and associations with peak severity (outpatient, hospitalized, ICU admission or death), Charlson Comorbidity Index (CCI), and body mass index (BMI) were evaluated using logistic regression. The study population (n = 129, 33.3% female, median 41.3 years of age) included 77 outpatient, 31 inpatient, 16 ICU-level, and 5 fatal cases. Three distinct inflammatory biomarker clusters were identified and were associated with significant differences in peak disease severity (p < 0.001), age (p < 0.001), BMI (p < 0.001), and CCI (p = 0.001). Host-biomarker profiles stratified a heterogeneous population of COVID-19 patients during the transition from peak illness to convalescence, and these distinct inflammatory patterns were associated with comorbid disease and severe illness due to COVID-19.


Assuntos
COVID-19 , Humanos , Feminino , Estados Unidos/epidemiologia , Masculino , SARS-CoV-2 , Estudos Prospectivos , Convalescença , Biomarcadores , Fenótipo , Índice de Gravidade de Doença , Hospitalização
11.
Am J Trop Med Hyg ; 107(6): 1302-1307, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36375459

RESUMO

The use of positive blood culture bottles for direct disk diffusion susceptibility testing (dDD), together with chromogenic culture limited to groups of pathogens for antimicrobial susceptibility testing interpretation may provide a means for laboratories-in-development to introduce rapid abbreviated blood culture testing. We assessed the performance of dDD on Chromatic MH agar using contrived positive blood culture bottles and compared findings with current standard practice. Furthermore, we characterized the growth of 24 bacterial and 3 yeast species on Chromatic MH agar with the aid of rapid spot tests for same-day identification. The coefficient of variation for reproducibility of dDD of four reference strains in 4 to 10 replicates (238 data points) ranged from 0% to 16.3%. Together with an additional 10 challenge isolates, the overall categorical agreement was 91.7% (351 data points). The following bacteria were readily identifiable: cream/white Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pyogenes; turquoise Streptococcus agalactiae, enterococci, Listeria monocytogenes; mauve Escherichia coli, Shigella sonnei, Citrobacter freundii; dark-blue Klebsiella and Enterobacter; green Pseudomonas aeruginosa; and brown Proteus. Clear colonies were seen with Salmonella, Acinetobacter, Burkholderia, and Yersinia enterocolitica (turns pink). Our study suggests that Chromatic MH for dDD may show promise as a rapid, clinically useful presumptive method for overnight simultaneous identification and antimicrobial susceptibility testing. However, there is a need to optimize the medium formulation to allow the recovery of Streptococcus pneumoniae and Haemophilus influenzae.


Assuntos
Anti-Infecciosos , Hemocultura , Humanos , Ágar , Identificação Social , Reprodutibilidade dos Testes , Streptococcus pyogenes , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
12.
PLoS One ; 17(8): e0272572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947596

RESUMO

BACKGROUND: Venous phlebotomy performed by trained personnel is critical for patient diagnosis and monitoring of chronic disease, but has limitations in resource-constrained settings, and represents an infection control challenge during outbreaks. Self-collection devices have the potential to shift phlebotomy closer to the point of care, supporting telemedicine strategies and virtual clinical trials. Here we assess a capillary blood micro-sampling device, the Tasso Serum Separator Tube (SST), for measuring blood protein levels in healthy subjects and non-hospitalized COVID-19 patients. METHODS: 57 healthy controls and 56 participants with mild/moderate COVID-19 were recruited at two U.S. military healthcare facilities. Healthy controls donated Tasso SST capillary serum, venous plasma and venous serum samples at multiple time points, while COVID-19 patients donated a single Tasso SST serum sample at enrolment. Concentrations of 17 protein inflammatory biomarkers were measured in all biospecimens by Ella multi-analyte immune-assay. RESULTS: Tasso SST serum protein measurements in healthy control subjects were highly reproducible, but their agreements with matched venous samples varied. Most of the selected proteins, including CRP, Ferritin, IL-6 and PCT, were well-correlated between Tasso SST and venous serum with little sample type bias, but concentrations of D-dimer, IL-1B and IL-1Ra were not. Self-collection at home with delayed sample processing was associated with significant concentrations differences for several analytes compared to supervised, in-clinic collection with rapid processing. Finally, Tasso SST serum protein concentrations were significantly elevated in in non-hospitalized COVID-19 patients compared with healthy controls. CONCLUSIONS: Self-collection of capillary blood with micro-sampling devices provides an attractive alternative to routine phlebotomy. However, concentrations of certain analytes may differ significantly from those in venous samples, and factors including user proficiency, temperature control and time lags between specimen collection and processing need to be considered for their effect on sample quality and reproducibility.


Assuntos
COVID-19 , Proteínas Sanguíneas , Coleta de Amostras Sanguíneas , COVID-19/diagnóstico , Voluntários Saudáveis , Humanos , Reprodutibilidade dos Testes , Manejo de Espécimes
13.
Front Microbiol ; 13: 960932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033872

RESUMO

Early in the pandemic, in March of 2020, an outbreak of COVID-19 occurred aboard the aircraft carrier USS Theodore Roosevelt (CVN-71), during deployment in the Western Pacific. Out of the crew of 4,779 personnel, 1,331 service members were suspected or confirmed to be infected with SARS-CoV-2. The demographic, epidemiologic, and laboratory findings of service members from subsequent investigations have characterized the outbreak as widespread transmission of virus with relatively mild symptoms and asymptomatic infection among mostly young healthy adults. At the time, there was no available vaccination against COVID-19 and there was very limited knowledge regarding SARS-CoV-2 mutation, dispersal, and transmission patterns among service members in a shipboard environment. Since that time, other shipboard outbreaks from which data can be extracted have occurred, but these later shipboard outbreaks have occurred largely in settings where the majority of the crew were vaccinated, thereby limiting spread of the virus, shortening duration of the outbreaks, and minimizing evolution of the virus within those close quarters settings. On the other hand, since the outbreak on the CVN-71 occurred prior to widespread vaccination, it continued over the course of roughly two months, infecting more than 25% of the crew. In order to better understand genetic variability and potential transmission dynamics of COVID-19 in a shipboard environment of immunologically naïve, healthy individuals, we performed whole-genome sequencing and virus culture from eighteen COVID-19-positive swabs collected over the course of one week. Using the unique variants identified in those genomes, we detected seven discrete groups of individuals within the population aboard CVN-71 infected with viruses of distinct genomic signature. This is in stark contrast to a recent outbreak aboard another U.S. Navy ship with >98% vaccinated crew after a port visit in Reykjavik, Iceland, where the outbreak lasted only approximately 2 weeks and the virus was clonal. Taken together, these results demonstrate the utility of sequencing from complex clinical samples for molecular epidemiology and they also suggest that a high rate of vaccination among a population in close communities may greatly reduce spread, thereby restricting evolution of the virus.

14.
Appl Environ Microbiol ; 88(12): e0060022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35652663

RESUMO

Burkholderia pseudomallei is a Gram-negative soil saprophyte with the potential to cause melioidosis, an opportunistic disease with a high mortality potential. Periodic case reports of melioidosis in or imported from Africa occur in the literature dating back decades. Furthermore, statistical models suggest Western sub-Saharan Africa as a high-risk zone for the presence of B. pseudomallei. A recent case report from the United Kingdom of a returning traveler from Ghana highlights the need for environmental studies in Ghana. We examined 100 soil samples from a rice farm in south-central Ghana. Soil was subjected to selective enrichment culture for B. pseudomallei using threonine-basal salt solution with colistin (TBSS-C50) and erythritol medium, as described in the literature. Bacterial cultures were identified with standard biochemical tests, a rapid antigen detection assay, and real-time PCR specific for B. pseudomallei. Of the 100 soil samples, 55% yielded cultures consistent with B. pseudomallei on Ashdown's agar as well as by capsular polysaccharide antigen production. This is the first confirmatory report of culture-confirmed B. pseudomallei in the environment of Ghana. Our study emphasizes the need for further exploration of the burden of human melioidosis in Ghana. We recommend that local clinicians familiarize themselves with the diagnosis and clinical management of melioidosis, while laboratories develop capacity for the safe isolation and identification of B. pseudomallei. IMPORTANCE We present the first confirmation of the presence of B. pseudomallei in the environment of Ghana. This study will bring attention to a disease with the potential to cause significant morbidity and mortality in Ghana, but which has gone completely unrecognized until this point. Furthermore, this work would encourage local clinicians to familiarize themselves with the diagnosis and clinical management of melioidosis and laboratories to develop capacity for the safe isolation and identification of B. pseudomallei.


Assuntos
Burkholderia pseudomallei , Melioidose , Burkholderia pseudomallei/genética , Gana , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Solo , Microbiologia do Solo
15.
Open Forum Infect Dis ; 9(1): ofab575, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35047649

RESUMO

BACKGROUND: The relationship between postvaccination symptoms and strength of antibody responses is unclear. The goal of this study was to determine whether adverse effects caused by vaccination with the Pfizer/BioNTech BNT162b2 vaccine are associated with the magnitude of vaccine-induced antibody levels. METHODS: We conducted a single-center, observational cohort study consisting of generally healthy adult participants that were not severely immunocompromised, had no history of coronavirus disease 2019, and were seronegative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein before vaccination. Severity of vaccine-associated symptoms was obtained through participant-completed questionnaires. Testing for immunoglobulin G antibodies against SARS-CoV-2 spike protein and receptor-binding domain was conducted using microsphere-based multiplex immunoassays performed on serum samples collected at monthly visits. Neutralizing antibody titers were determined by microneutralization assays. RESULTS: Two hundred six participants were evaluated (69.4% female, median age 41.5 years old). We found no correlation between vaccine-associated symptom severity scores and vaccine-induced antibody titers 1 month after vaccination. We also observed that (1) postvaccination symptoms were inversely correlated with age and weight and more common in women, (2) systemic symptoms were more frequent after the second vaccination, (3) high symptom scores after first vaccination were predictive of high symptom scores after second vaccination, and (4) older age was associated with lower titers. CONCLUSIONS: Lack of postvaccination symptoms after receipt of the BNT162b2 vaccine does not equate to lack of vaccine-induced antibodies 1 month after vaccination.

16.
BMJ Open ; 11(9): e050330, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526342

RESUMO

PURPOSE: In 2012, US Marines and Sailors began annual deployments to Australia to participate in joint training exercises with the Australian Defence Force and other partners in the region. During their training, US service members are exposed to a variety of infectious disease threats not normally encountered by American citizens. This paper describes a cohort of US Marines and Sailors enrolled during five rotations to Australia between 2016 and 2020. PARTICIPANTS: Study participation is strictly voluntary. Group informational sessions are held prior to deployment to describe the study structure and goals, as well as the infectious disease threats that participants may encounter while in Australia. All participants provided written informed consent. Consented participants complete a pre-deployment questionnaire to collect data including basic demographic information, military occupational specialty, travel history, family history, basic health status and personal habits such as alcohol consumption. Blood is collected for serum, plasma and peripheral blood mononuclear cells (PBMC) processing. Data and specimen collection is repeated up to three times: before, during and after deployment. FINDINGS TO DATE: From the five rotations that comprised the 2016-2020 Marine Rotational Force-Darwin, we enrolled 1289 volunteers. Enrolments during this period were overwhelmingly white male under the age of 24 years. Most of the enrollees were junior enlisted and non-commissioned officers, with a smaller number of staff non-commissioned officers and commissioned officers, and minimal warrant officers. Over half of the enrollees had occupational specialty designations for infantry. FUTURE PLANS: In the future, we will screen samples for serological evidence of infection with Burkholderia pseudomallei, Coxiella burnetii, Ross River virus, SARS-CoV-2 and other operationally relevant pathogens endemic in Australia. Antigenic stimulation assays will be performed on PBMCs collected from seropositive individuals to characterise the immune response to these infections in this healthy American population.


Assuntos
COVID-19 , Militares , Adulto , Austrália/epidemiologia , Estudos de Coortes , Humanos , Leucócitos Mononucleares , Masculino , SARS-CoV-2 , Estados Unidos/epidemiologia , Adulto Jovem
17.
Sci Rep ; 11(1): 16905, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413363

RESUMO

Sepsis is a life-threatening condition and understanding the disease pathophysiology through the use of host immune response biomarkers is critical for patient stratification. Lack of accurate sepsis endotyping impedes clinicians from making timely decisions alongside insufficiencies in appropriate sepsis management. This work aims to demonstrate the potential feasibility of a data-driven validation model for supporting clinical decisions to predict sepsis host-immune response. Herein, we used a machine learning approach to determine the predictive potential of identifying sepsis host immune response for patient stratification by combining multiple biomarker measurements from a single plasma sample. Results were obtained using the following cytokines and chemokines IL-6, IL-8, IL-10, IP-10 and TRAIL where the test dataset was 70%. Supervised machine learning algorithm naïve Bayes and decision tree algorithm showed good accuracy of 96.64% and 94.64%. These promising findings indicate the proposed AI approach could be a valuable testing resource for promoting clinical decision making.


Assuntos
Algoritmos , Biomarcadores/análise , Aprendizado de Máquina , Sepse/diagnóstico , Teorema de Bayes , Estudos de Casos e Controles , Tomada de Decisão Clínica , Humanos , Reprodutibilidade dos Testes
18.
Biosens Bioelectron ; 171: 112726, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33113386

RESUMO

The implementation of endotype-driven effective intervention strategies is now considered as an essential component for sepsis management. Rapid screening and frequent monitoring of immune responses are critical for evidence-based informed decisions in the early hours of patient arrival. Current technologies focus on pathogen identification that lack rapid testing of the patient immune response, impeding clinicians from providing appropriate sepsis treatment. Herein, we demonstrate a first-of-its-kind novel point-of-care device that uses a unique approach by directly monitoring a panel of five cytokine biomarkers (IL-6, IL-8, IL-10, TRAIL & IP-10), that is attributed as a sign of the body's host immune response to sepsis. The developed point-of-care device encompasses a disposable sensor cartridge attached to an electrochemical reader. High sensitivity is achieved owing to the unique sensor design with an array of nanofilm semiconducting/metal electrode interface, functionalized with specific capture probes to measure target biomarkers simultaneously using non-faradaic electrochemical impedance spectroscopy. The sensor has a detection limit of ~1 pg/mL and provides results in less than five minutes from a single drop of undiluted plasma sample. Furthermore, the sensor demonstrates an excellent correlation (Pearson's r > 0.90) with the reference method for a total n = 40 clinical samples, and the sensor's performance is ~30 times faster compared to the standard reference technique. We have demonstrated the sensor's effectiveness to enhance diagnosis with a mechanistic biomarker-guided approach that can help disease endotypying for effective clinical management of sepsis at the patient bedside.


Assuntos
Técnicas Biossensoriais , Sepse , Citocinas , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Sepse/diagnóstico
19.
PLoS Negl Trop Dis ; 14(8): e0008381, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804954

RESUMO

The world's most consequential pathogens occur in regions with the fewest diagnostic resources, leaving the true burden of these diseases largely under-represented. During a prospective observational study of sepsis in Takeo Province Cambodia, we enrolled 200 patients over an 18-month period. By coupling traditional diagnostic methods such as culture, serology, and PCR to Next Generation Sequencing (NGS) and advanced statistical analyses, we successfully identified a pathogenic cause in 46.5% of our cohort. In all, we detected 25 infectious agents in 93 patients, including severe threat pathogens such as Burkholderia pseudomallei and viral pathogens such as Dengue virus. Approximately half of our cohort remained undiagnosed; however, an independent panel of clinical adjudicators determined that 81% of those patients had infectious causes of their hospitalization, further underscoring the difficulty of diagnosing severe infections in resource-limited settings. We garnered greater insight as to the clinical features of severe infection in Cambodia through analysis of a robust set of clinical data.


Assuntos
Sepse/epidemiologia , Sepse/etiologia , Sepse/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/epidemiologia , Camboja/epidemiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Prospectivos , Sepse/virologia , Análise de Sequência de RNA , Testes Sorológicos , Viroses/diagnóstico , Viroses/epidemiologia , Vírus/classificação
20.
Open Forum Infect Dis ; 7(5): ofaa103, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32391401

RESUMO

In 2012, the United States Marine Corps began annual deployments around Australia, including highly endemic areas for Burkholderia pseudomallei. B. pseudomallei infection, or melioidosis, is difficult to diagnose, and culture remains the gold standard. Accurate and timely diagnosis is essential, however, to ensuring appropriate therapy. Ten days after returning from Australia, a Marine presented to a community hospital with massive cervical lymphadenopathy, fever, and cough. Computed tomography demonstrated scattered pulmonary infiltrates with small cavitations; lymphadenopathy involving the cervical, supraclavicular, and mediastinal nodes; and splenomegaly. Sputum and blood cultures were negative. Empiric antimicrobial therapy with ceftazidime was initiated for suspected melioidosis. Retrospectively, a prototype iSTAT cartridge modified to detect B. pseudomallei capsular polysaccharide antigen was used to test a specimen of the patient's blood and was determined to be positive. Over the course of therapy, B. pseudomallei capsular antigen levels in blood declined as the patient improved. The leveraging of an existing point-of-care (POC) analyzer to create a rapid diagnostic assay for melioidosis provides a template for rapid POC diagnostics that could significantly improve the ability of clinicians to deliver timely and appropriate therapy for serious infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA