Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(31): 43927-43940, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38913262

RESUMO

The caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) is a prevalent pest in soybean plantations, managed using both natural and synthetic chemical products. However, the emergence of resistance in some populations emphasizes the need to explore alternative insecticides. Flupyradifurone, a neurotoxic insecticide, has not been previously used for controlling A. gemmatalis. This study evaluated the potential of flupyradifurone in the management of A. gemmatalis. Initially, the toxicity and anti-feeding effects, as well as histopathological and cytotoxic impacts, of flupyradifurone on A. gemmatalis were evaluated. Subsequently, the indirect effects of flupyradifurone on the midgut and fat body of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) were verified. The results indicate the susceptibility of caterpillars to flupyradifurone, with an LC50 of 5.10 g L-1. Furthermore, the insecticide adversely affects survival, induces an anti-feeding response, and inflicts damage on the midgut of the caterpillars. However, flupyradifurone also leads to side effects in the predator P. nigrispinus through indirect intoxication of the caterpillars, including midgut and fat body damage. While flupyradifurone demonstrates toxicity to A. gemmatalis, suggesting its potential for the chemical control of this pest, the indirect negative effects on the predator indicate the need for its controlled use in integrated pest management programs with the insecticide and the predator.


Assuntos
Inseticidas , Animais , Inseticidas/toxicidade , Larva/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/toxicidade , Heterópteros/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Piridinas
2.
Pestic Biochem Physiol ; 187: 105188, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127063

RESUMO

Pest management is challenged with resistant herbivores and problems regarding human health and environmental issues. Indeed, the greatest challenge to modern agriculture is to protect crops from pests and still maintain environmental quality. This study aimed to analyze by in silico, in vitro, and in vivo approaches to the feasibility of using the inhibitory protein extracted from mammals - Bovine Pancreatic Trypsin Inhibitor (BPTI) as a potential inhibitor of digestive trypsins from the pest Anticarsia gemmatalis and comparing the results with the host-plant inhibitor - Soybean Kunitz Trypsin Inhibitor (SKTI). BPTI and SKTI interacts with A. gemmatalis trypsin-like enzyme competitively, through hydrogen and hydrophobic bonds. A. gemmatalis larvae exposed to BPTI did not show two common adaptative mechanisms i.e., proteolytic degradation and overproduction of proteases, presenting highly reduced trypsin-like activity. On the other hand, SKTI-fed larvae did not show reduced trypsin-like activity, presenting overproduction of proteases and SKTI digestion. In addition, the larval survival was reduced by BPTI similarly to SKTI, and additionally caused a decrease in pupal weight. The non-plant protease inhibitor BPTI presents intriguing element to compose biopesticide formulations to help decrease the use of conventional refractory pesticides into integrated pest management programs.


Assuntos
Agentes de Controle Biológico , Glycine max , Mariposas , Praguicidas , Animais , Aprotinina/farmacologia , Agentes de Controle Biológico/farmacologia , Bovinos , Hidrogênio/farmacologia , Larva , Peptídeo Hidrolases/metabolismo , Praguicidas/farmacologia , Inibidores de Proteases/farmacologia , Tripsina , Inibidores da Tripsina/farmacologia
3.
Arch Insect Biochem Physiol ; 110(2): e21887, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35315942

RESUMO

Insects overcome the action of natural protease inhibitors (PIs) due to evolutionary adaptations through endogenous proteolysis and reprogramming proteases. Insect adaptations complicate the formulation of IP-based crop protection products. However, small peptides designed based on the active site of enzymes have shown promising results that could change this scenario. GORE1 and GORE2 are designed tripeptides that reduce the survival of Anticarsia gemmatalis when ingested orally. In this article, the stability and ability of the peptides to bind trypsin-like enzymes of A. gemmatalis were evaluated by molecular dynamics (MD) simulations. The ability of the peptides to inhibit trypsin-like enzymes in vivo was compared with the SKTI protein by feeding A. gemmatalis larvae at different concentrations, followed by an inhibition persistence assay. During the MD simulation of enzyme-ligand complexes, both peptides showed a small variation of root-mean-square deviation and root-mean-square fluctuation, suggesting that these molecules reach equilibrium when forming a complex with the trypsin-like enzyme. Furthermore, both peptides form hydrogen bonds with substrate recognition sites of A. gemmatalis trypsin-like enzyme, with GORE2 having more interactions than GORE1. Larvae of A. gemmatalis exposed to the peptides and SKTI showed a similar reduction in proteolytic activity, but the persistence of inhibition of trypsin-like enzyme was longer in peptide-fed insects. Despite their size, the peptides exhibit important active and substrate binding site interactions, stability during complex formation, and steadiness effects in vivo. The results provide fundamental information for the development of mimetic molecules and help in decision-making for the selection of delivery methods for larger-scale experiments regarding similar molecules.


Assuntos
Fabaceae , Mariposas , Animais , Larva , Peptídeos , Glycine max/metabolismo , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA