Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38600824

RESUMO

Surface modification is an attractive strategy to adjust the properties of polymer membranes. Unfortunately, predictive structure-processing-property relationships between the modification strategies and membrane performance are often unknown. One possibility to tackle this challenge is the application of data-driven methods such as machine learning. In this study, we applied machine learning methods to data sets containing the performance parameters of modified membranes. The resulting machine learning models were used to predict performance parameters, such as the pure water permeability and the zeta potential of membranes modified with new substances. The predictions had low prediction errors, which allowed us to generalize them to similar membrane modifications and processing conditions. Additionally, machine learning methods were able to identify the impact of substance properties and process parameters on the resulting membrane properties. Our results demonstrate that small data sets, as they are common in materials science, can be used as training data for predictive machine learning models. Therefore, machine learning shows great potential as a tool to expedite the development of high-performance membranes while reducing the time and costs associated with the development process at the same time.

2.
Glob Chall ; 8(3): 2300198, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486926

RESUMO

In this work, bismuth tungstate Bi2WO6 is immobilized on polymer membranes to photocatalytically remove micropollutants from water as an alternative to titanium dioxide TiO2. A synthesis method for Bi2WO6 preparation and its immobilization on a polymer membrane is developed. Bi2WO6 is characterized using X-ray diffraction and UV-vis reflectance spectroscopy, while the membrane undergoes analysis through scanning electron microscopy, X-ray photoelectron spectroscopy, and degradation experiments. The density of states calculations for TiO2 and Bi2WO6, along with PVDF reactions with potential reactive species, are investigated by density functional theory. The generation of hydroxyl radicals OH• is investigated via the reaction of coumarin to umbelliferone via fluorescence probe detection and electron paramagnetic resonance. Increasing reactant concentration enhances Bi2WO6 crystallinity. Under UV light at pH 7 and 11, the Bi2WO6 membrane completely degrades propranolol in 3 and 1 h, respectively, remaining stable and reusable for over 10 cycles (30 h). Active under visible light with a bandgap of 2.91 eV, the Bi2WO6 membrane demonstrates superior stability compared to a TiO2 membrane during a 7-day exposure to UV light as Bi2WO6 does not generate OH• radicals. The Bi2WO6 membrane is an alternative for water pollutant degradation due to its visible light activity and long-term stability.

3.
ACS Appl Mater Interfaces ; 16(5): 5677-5682, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284232

RESUMO

Hydrogels, three-dimensional hydrophilic polymeric networks with high water retaining capacity, have gained prominence in wound management and drug delivery due to their tunability, softness, permeability, and biocompatibility. Electron-beam polymerized poly(ethylene glycol) diacrylate (PEGDA) hydrogels are particularly useful for phototherapies such as antimicrobial photodynamic therapy (aPDT) due to their excellent optical properties. This work takes advantage of the transparency of PEGDA hydrogels to investigate bacterial responses to aPDT at the single-cell level, in real-time and in situ. The photosensitizer methylene blue (MB) was loaded in PEGDA hydrogels by using two methods: reversible loading and irreversible immobilization within the 3D polymer network. MB release kinetics and singlet oxygen generation were studied, revealing the distinct behaviors of both hydrogels. Real-time imaging of Escherichia coli was conducted during aPDT in both hydrogel types, using the Min protein system to report changes in bacterial physiology. Min oscillation patterns provided mechanistic insights into bacterial photoinactivation, revealing a dependence on the hydrogel preparation method. This difference was attributed to the mobility of MB within the hydrogel, affecting its direct interaction with bacterial membranes. These findings shed light on the complex interplay between hydrogel properties and the bacterial response during aPDT, offering valuable insights for the development of antibacterial wound dressing materials. The study demonstrates the capability of real-time, single-cell fluorescence microscopy to unravel dynamic bacterial behaviors in the intricate environment of hydrogel surfaces during aPDT.


Assuntos
Anti-Infecciosos , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Hidrogéis/farmacologia , Antibacterianos , Polietilenoglicóis , Polímeros
4.
Polymers (Basel) ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139937

RESUMO

An ideal wound dressing not only needs to absorb excess exudate but should also allow for a moist wound-healing environment as well as being mechanically strong. Such a dressing can be achieved by combining both a natural (alginate) and synthetic (poly(ethylene glycol) polymer. Interestingly, using an electron beam on (meth)acrylated polymers allows their covalent crosslinking without the use of toxic photo-initiators. The goal of this work was to crosslink alginate at different methacrylation degrees (26.1 and 53.5% of the repeating units) with diacrylated poly(ethylene glycol) (PEGDA) using electron-beam irradiation at different doses to create strong, transparent hydrogels. Infrared spectroscopy showed that both polymers were homogeneously distributed within the irradiated hydrogel. Rheology showed that the addition of PEGDA into alginate with a high degree of methacrylation and a polymer concentration of 6 wt/v% improved the storage modulus up to 15,867 ± 1102 Pa. Gel fractions > 90% and swelling ratios ranging from 10 to 250 times its own weight were obtained. It was observed that the higher the storage modulus, the more limited the swelling ratio due to a more crosslinked network. Finally, all species were highly transparent, with transmittance values > 80%. This may be beneficial for the visual inspection of healing progression. Furthermore, these polymers may eventually be used as carriers of photosensitizers, which is favorable in applications such as photodynamic therapy.

5.
RSC Adv ; 13(47): 32928-32938, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38025853

RESUMO

The existence of endocrine disrupting chemicals (EDCs) in water and wastewater gives rise to significant environmental concerns. Conventional treatment approaches demonstrate limited capacity for EDC removal. Thus, incorporation of advanced separation procedures becomes essential to enhance the efficiency of EDC removal. In this work, adsorber composite microfiltration polyethersulfone membranes embedded with divinyl benzene polymer particles were created. These membranes were designed for effectively removing a variety of EDCs from water. The adsorber particles were synthesized using precipitation polymerization. Subsequently, they were integrated into the membrane scaffold through a phase inversion process. The technique of electron beam irradiation was applied for the covalent immobilization of particles within the membrane scaffold. Standard characterization procedures were carried out (i.e., water permeance, contact angle, X-ray photoelectron spectroscopy and scanning electron microscopy) to gain a deep understanding of the synthesized membrane properties. Dynamic adsorption experiments demonstrated the excellent capability of the synthesized composite membranes to effectively remove EDCs from water. Particularly, among the various target molecules examined, testosterone stands out with the most remarkable enhancement, presenting an adsorption loading of 220 mg m-2. This is an impressive 26-fold increase in the adsorption when compared to the performance of the pristine membrane. Similarly, androst-4-ene-3,17-dione exhibited an 18-fold improvement in adsorption capacity in comparison to the pristine membrane. The composite membranes also exhibited significant adsorption capacities for other key compounds, including 17ß-estradiol, equilin, and bisphenol-A. With the implementation of an effective regeneration procedure, the composite membranes were put to use for adsorption over three consecutive cycles without any decline in their adsorption capacity.

6.
Angew Chem Int Ed Engl ; 62(18): e202216962, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36637456

RESUMO

Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.


Assuntos
Cofator PQQ , Álcool de Polivinil , Álcool de Polivinil/química , Biodegradação Ambiental , Cofator PQQ/metabolismo
7.
J Hazard Mater ; 447: 130832, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696777

RESUMO

The lack of effective technologies to remove steroid hormones (SHs) from aquatic systems is a critical issue for both environment and public health. The performance of a flow-through photocatalytic membrane reactor (PMR) with TiO2 immobilized on a photostable poly(vinylidene fluoride) membrane (PVDF-TiO2) was evaluated in the context of SHs degradation at concentrations from 0.05 to 1000 µg/L under UV exposure (365 nm). A comprehensive investigation into the membrane preparation approach, including varying the surface Ti content and distribution, and membrane pore size, was conducted to gain insights on the rate-limiting steps for the SHs degradation. Increasing surface Ti content from 4 % to 6.5 % enhanced the 17ß-estradiol (E2) degradation from 46 ± 12-81 ± 6 %. Apparent degradation kinetics were independent of both TiO2 homogeneity and membrane pore size (0.1-0.45 µm). With optimized conditions, E2 removal was higher than 96 % at environmentally relevant feed concentration (100 ng/L), a flux of 60 L/m2h, 25 mW/cm2, and 6.5 % Ti. These results indicated that the E2 degradation on the PVDF-TiO2 membrane was limited by the catalyst content and light penetration depth. Further exploration of novel TiO2 immobilization approach that can offer a larger catalyst content and light penetration is required to improve the micropollutant removal efficiency in PMR.

8.
Membranes (Basel) ; 12(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35736306

RESUMO

Biocatalytic membrane reactors combine the highly efficient biotransformation capability of enzymes with the selective filtration performance of membrane filters. Common strategies to immobilize enzymes on polymeric membranes are based on chemical coupling reactions. Still, they are associated with drawbacks such as long reaction times, high costs, and the use of potentially toxic or hazardous reagents. In this study, a reagent-free immobilization method based on electron beam irradiation was investigated, which allows much faster, cleaner, and cheaper fabrication of enzyme membrane reactors. Two industrial lipase enzymes were coupled onto a polyvinylidene fluoride (PVDF) flat sheet membrane to create self-cleaning surfaces. The response surface methodology (RSM) in the design-of-experiments approach was applied to investigate the effects of three numerical factors on enzyme activity, yielding a maximum activity of 823 ± 118 U m-2 (enzyme concentration: 8.4 g L-1, impregnation time: 5 min, irradiation dose: 80 kGy). The lipolytic membranes were used in fouling tests with olive oil (1 g L-1 in 2 mM sodium dodecyl sulfate), resulting in 100% regeneration of filtration performance after 3 h of self-cleaning in an aqueous buffer (pH 8, 37 °C). Reusability with three consecutive cycles demonstrates regeneration of 95%. Comprehensive membrane characterization was performed by determining enzyme kinetic parameters, permeance monitoring, X-ray photoelectron spectroscopy, FTIR spectroscopy, scanning electron microscopy, and zeta potential, as well as water contact angle measurements.

9.
Viruses ; 14(6)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746772

RESUMO

Despite available vaccines, antibodies and antiviral agents, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic still continues to cause severe disease and death. Current treatment options are limited, and emerging new mutations are a challenge. Thus, novel treatments and measures for prevention of viral infections are urgently required. Photodynamic inactivation (PDI) is a potential treatment for infections by a broad variety of critical pathogens, including viruses. We explored the infectiousness of clinical SARS-CoV-2 isolates in Vero cell cultures after PDI-treatment, using the photosensitizer Tetrahydroporphyrin-tetratosylate (THPTS) and near-infrared light. Replication of viral RNA (qPCR), viral cytopathic effects (microscopy) and mitochondrial activity were assessed. PDI of virus suspension with 1 µM THPTS before infection resulted in a reduction of detectable viral RNA by 3 log levels at day 3 and 6 after infection to similar levels as in previously heat-inactivated virions (<99.9%; p < 0.05). Mitochondrial activity, which was significantly reduced by viral infection, was markedly increased by PDI to levels similar to uninfected cell cultures. When applying THPTS-based PDI after infection, a single treatment had a virus load-reducing effect only at a higher concentration (3 µM) and reduced cell viability in terms of PDI-induced toxicity. Repeated PDI with 0.3 µM THPTS every 4 h for 3 d after infection reduced the viral load by more than 99.9% (p < 0.05), while cell viability was maintained. Our data demonstrate that THPTS-based antiviral PDI might constitute a promising approach for inactivation of SARS-CoV-2. Further testing will demonstrate if THPTS is also suitable to reduce the viral load in vivo.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Pandemias , RNA Viral/genética , Células Vero
10.
Nat Nanotechnol ; 17(4): 417-423, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361923

RESUMO

Micropollutants in the aquatic environment pose a high risk to both environmental and human health. The photocatalytic degradation of steroid hormones in a flow-through photocatalytic membrane reactor under UV light (365 nm) at environmentally relevant concentrations (50 ng l-1 to 1 mg l-1) was examined using a polyethersulfone-titanium dioxide (PES-TiO2) membrane. The TiO2 nanoparticles (10-30 nm) were immobilized both on the surface and in the nanopores (220 nm) of the membrane. Water quality and operational parameters were evaluated to elucidate the limiting factors in the degradation of steroid hormones. Flow through the photocatalytic membrane increased contact between the micropollutants and ·OH in the pores. Notably, 80% of both oestradiol and oestrone was removed from a 200 ng l-1 feed (at 25 mW cm-2 and 300 l m-2 h-1). Progesterone and testosterone removal was lower at 44% and 33%, respectively. Increasing the oestradiol concentration to 1 mg l-1 resulted in 20% removal, whereas with a 100 ng l-1 solution, a maximum removal of 94% was achieved at 44 mW cm-2 and 60 l m-2 h-1. The effectiveness of the relatively well-known PES-TiO2 membrane for micropollutant removal has been demonstrated; this effectiveness is due to the nanoscale size of the membrane, which provides a high surface area and facilitates close contact of the radicals with the very small (0.8 nm) micropollutant at an extremely low, environmentally relevant concentration (100 ng l-1).


Assuntos
Poluentes Químicos da Água , Catálise , Estradiol , Humanos , Polímeros , Esteroides , Sulfonas , Titânio , Poluentes Químicos da Água/análise
11.
Front Chem ; 10: 1094981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700077

RESUMO

Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.

12.
Polymers (Basel) ; 13(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199570

RESUMO

Radiation-induced graft immobilization (RIGI) is a novel method for the covalent binding of substances on polymeric materials without the use of additional chemicals. In contrast to the well-known radiation-induced graft polymerization (RIGP), RIGI can use non-vinyl compounds such as small and large functional molecules, hydrophilic polymers, or even enzymes. In a one-step electron-beam-based process, immobilization can be performed in a clean, fast, and continuous operation mode, as required for industrial applications. This study proposes a reaction mechanism using polyvinylidene fluoride (PVDF) and two small model molecules, glycine and taurine, in aqueous solution. Covalent coupling of single molecules is achieved by radical recombination and alkene addition reactions, with water radiolysis playing a crucial role in the formation of reactive solute species. Hydroxyl radicals contribute mainly to the immobilization, while solvated electrons and hydrogen radicals play a minor role. Release of fluoride is mainly induced by direct ionization of the polymer and supported by water. Hydrophobic chains attached to cations appear to enhance the covalent attachment of solutes to the polymer surface. Computational work is complemented by experimental studies, including X-ray photoelectron spectroscopy (XPS) and fluoride high-performance ion chromatography (HPIC).

13.
Sci Total Environ ; 773: 145111, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940717

RESUMO

Plastics are globally used for a variety of benefits. As a consequence of poor recycling or reuse, improperly disposed plastic waste accumulates in terrestrial and aquatic ecosystems to a considerable extent. Large plastic waste items become fragmented to small particles through mechanical and (photo)chemical processes. Particles with sizes ranging from millimeter (microplastics, <5 mm) to nanometer (nanoplastics, NP, <100 nm) are apparently persistent and have adverse effects on ecosystems and human health. Current research therefore focuses on whether and to what extent microorganisms or enzymes can degrade these NP. In this study, we addressed the question of what information isothermal titration calorimetry, which tracks the heat of reaction of the chain scission of a polyester, can provide about the kinetics and completeness of the degradation process. The majority of the heat represents the cleavage energy of the ester bonds in polymer backbones providing real-time kinetic information. Calorimetry operates even in complex matrices. Using the example of the cutinase-catalyzed degradation of polyethylene terephthalate (PET) nanoparticles, we found that calorimetry (isothermal titration calorimetry-ITC) in combination with thermokinetic models is excellently suited for an in-depth analysis of the degradation processes of NP. For instance, we can separately quantify i) the enthalpy of surface adsorption ∆AdsH = 129 ± 2 kJ mol-1, ii) the enthalpy of the cleavage of the ester bonds ∆EBH = -58 ± 1.9 kJ mol-1 and the apparent equilibrium constant of the enzyme substrate complex K = 0.046 ± 0.015 g L-1. It could be determined that the heat production of PET NP degradation depends to 95% on the reaction heat and only to 5% on the adsorption heat. The fact that the percentage of cleaved ester bonds (η = 12.9 ± 2.4%) is quantifiable with the new method is of particular practical importance. The new method promises a quantification of enzymatic and microbial adsorption to NP and their degradation in mimicked real-world aquatic conditions.


Assuntos
Microplásticos , Polietilenotereftalatos , Calorimetria , Ecossistema , Humanos , Plásticos
14.
Membranes (Basel) ; 11(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573320

RESUMO

This work demonstrates the enhancement of the adsorption properties of polyethersulfone (PES) microfiltration membranes for 17ß-estradiol (E2) from water. This compound represents a highly potent endocrine-disrupting chemical (EDC). The PES membranes were modified with a hydrophilic coating functionalized by amide groups. The modification was performed by the interfacial reaction between hexamethylenediamine (HMD) or piperazine (PIP) as the amine monomer and trimesoyl chloride (TMC) or adipoyl chloride (ADC) as the acid monomer on the surface of the membrane using electron beam irradiation. The modified membranes and the untreated PES membrane were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water permeance measurements, water contact angle measurements, and adsorption experiments. Furthermore, the effects of simultaneous changes in four modification parameters: amine monomer types (HMD or PIP), acid monomer types (TMC or ADC), irradiation dosage (150 or 200 kGy), and the addition of toluene as a swelling agent, on the E2 adsorption capacity were investigated. The results showed that the adsorption capacities of modified PES membranes toward E2 are >60%, while the unmodified PES membrane had an adsorption capacity up to 30% for E2 under similar experimental conditions, i.e., an enhancement of a factor of 2. Next to the superior adsorption properties, the modified PES membranes maintain high water permeability and no pore blockage was observed. The highlighted results pave the way to develop efficient low-cost, stable, and high-performance adsorber membranes.

15.
Front Chem ; 9: 804698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118049

RESUMO

Immobilization of proteins by covalent coupling to polymeric materials offers numerous excellent advantages for various applications, however, it is usually limited by coupling strategies, which are often too expensive or complex. In this study, an electron-beam-based process for covalent coupling of the model protein bovine serum albumin (BSA) onto polyvinylidene fluoride (PVDF) flat sheet membranes was investigated. Immobilization can be performed in a clean, fast, and continuous mode of operation without any additional chemicals involved. Using the Design of Experiments (DoE) approach, nine process factors were investigated for their influence on graft yield and homogeneity. The parameters could be reduced to only four highly significant factors: BSA concentration, impregnation method, impregnation time, and electron beam irradiation dose. Subsequently, optimization of the process was performed using the Response Surface Methodology (RSM). A one-step method was developed, resulting in a high BSA grafting yield of 955 mg m-2 and a relative standard deviation of 3.6%. High efficiency was demonstrated by reusing the impregnation solution five times consecutively without reducing the final BSA grafting yield. Comprehensive characterization was conducted by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and measurements of zeta potential, contact angle and surface free energy, as well as filtration performance. In addition, mechanical properties and morphology were examined using mercury porosimetry, tensile testing, and scanning electron microscopy (SEM).

16.
RSC Adv ; 11(13): 7600-7609, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423227

RESUMO

Photodynamic treatment is a promising tool for the therapy of multidrug-resistant bacteria. In this study, we highlight photosensitizer-loaded hydrogels as an application system for infected wounds. The poly(ethylene glycol) diacrylate-based and electron beam-polymerized hydrogels were mechanically stable and transparent. They were loaded with two photoactive, porphyrin-based drugs - tetrakis(1 methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) and tetrahydroporphyrin - p toluenesulfonate (THPTS). The hydrogels released a sufficient amount of the photosensitizers (up to 300 µmol l-1), relevant for efficiency. The antimicrobial effectivity of loaded hydrogels was investigated in a tissue-like system as well as in a liquid system against a multiresistant Escherichia coli. In both systems, light induced eradication was possible. In contrast, hydrogels alone showed only minor antimicrobial activity. Furthermore, the loaded hydrogels were successfully tested against seven multidrug-resistant bacterial strains, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Achromobacter xylosoxidans. The eradication of these pathogens, except A. xylosoxidans, was successfully demonstrated. In general, TMPyP-loaded hydrogels were more effective than THPTS-loaded ones. Nevertheless, both photosensitizers displayed effectivity against all investigated bacteria strains. Taken together, our data demonstrate that photosensitizer-loaded hydrogels are a promising new tool to improve the treatment of wounds infected with problematic bacterial pathogens.

17.
Polymers (Basel) ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066146

RESUMO

The occurrence of micropollutants in the environment is an emerging issue. Diclofenac, a non-steroidal anti-inflammatory drug, is one of the most frequently detected pharmaceuticals in the environment worldwide. Diclofenac is transformed by UVA light into different products with higher toxicity. The absorbance of the transformation products overlaps with the absorbance of diclofenac itself and inhibits the ongoing photoreaction. By adding polyvinylidene difluoride (PVDF), the products adsorb to the surface of PVDF. Therefore, phototransformation of diclofenac and total organic carbon (TOC) removal is enhanced and the toxicity decreased. At 15 min and 18 h of UVA treatment, removal of diclofenac and TOC increases from 56% to 65% and 18% to 54%, respectively, when PVDF is present. The toxicity of a UVA treated (18 h) diclofenac solution doubles (from 5 to 10, expressed in toxicity units, TU), while no toxicity was detectable when PVDF is present during UVA treatment (TU = 0). PVDF does not need to be irradiated itself but must be present during photoreaction. The adsorbent can be reused by washing with water or ethanol. Diclofenac (25 mg L-1) UVA light irradiation was monitored with high performance liquid chromatography (HPLC), UV-Vis spectroscopy and by analysing the decrease of TOC. The toxicity towards Vibrio fischeri was examined according to DIN EN ISO 11348-1: 2009-05. Density functional theory (DFT) was used to simulate the phototransformation products known in literature as well as further products identified via gas chromatography-mass spectrometry (GC-MS). The absorption spectra, reaction enthalpies (ΔH) and Gibbs free energy of reactions (ΔG) were calculated. The combination of UVA irradiation of diclofenac with adsorption of photoproducts to PVDF is unique and opens up new possibilities to enhance removal of pollutants from water.

18.
Polymers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575508

RESUMO

A major goal of membrane science is the improvement of the membrane performance and the reduction of fouling effects, which occur during most aqueous filtration applications. Increasing the surface hydrophilicity can improve the membrane performance (in case of aqueous media) and decelerates membrane fouling. In this study, a PES microfiltration membrane (14,600 L m-2 h-1 bar-1) was hydrophilized using a hydrophilic surface coating based on amide functionalities, converting the hydrophobic membrane surface (water contact angle, WCA: ~90°) into an extremely hydrophilic one (WCA: ~30°). The amide layer was created by first immobilizing piperazine to the membrane surface via electron beam irradiation. Subsequently, a reaction with 1,3,5-benzenetricarbonyl trichloride (TMC) was applied to generate an amide structure. The presented approach resulted in a hydrophilic membrane surface, while maintaining permeance of the membrane without pore blocking. All membranes were investigated regarding their permeance, porosity, average pore size, morphology (SEM), chemical composition (XPS), and wettability. Soxhlet extraction was carried out to demonstrate the stability of the applied coating. The improvement of the modified membranes was demonstrated using dead-end filtration of algae solutions. After three fouling cycles, about 60% of the initial permeance remain for the modified membranes, while only ~25% remain for the reference.

19.
Adv Sci (Weinh) ; 6(14): 1900491, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31380212

RESUMO

Polyethylene terephthalate (PET) is the most important mass-produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from Thermobifida fusca have emerged as promising biocatalysts for an eco-friendly PET recycling process. In this study, postconsumer PET food packaging containers are treated with TfCut2 and show weight losses of more than 50% after 96 h of incubation at 70 °C. Differential scanning calorimetry analysis indicates that the high linear degradation rates observed in the first 72 h of incubation is due to the high hydrolysis susceptibility of the mobile amorphous fraction (MAF) of PET. The physical aging process of PET occurring at 70 °C is shown to gradually convert MAF to polymer microstructures with limited accessibility to enzymatic hydrolysis. Analysis of the chain-length distribution of degraded PET by nuclear magnetic resonance spectroscopy reveals that MAF is rapidly hydrolyzed via a combinatorial exo- and endo-type degradation mechanism whereas the remaining PET microstructures are slowly degraded only by endo-type chain scission causing no detectable weight loss. Hence, efficient thermostable biocatalysts are required to overcome the competitive physical aging process for the complete degradation of postconsumer PET materials close to the glass transition temperature of PET.

20.
Polymers (Basel) ; 11(2)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30960328

RESUMO

A novel technique for the covalent attachment of a light-responsive spiropyran onto polyamide thin film composite nanofiltration (NF) membranes in a one-step reaction using low-energy electron beam technology is described. The effect of illumination of the immobilized spiropyran was studied, as well as the resulting membrane properties with respect to MgSO4 retention, water permeability rate, and chlorine resistance. Electron beam irradiation showed a direct effect on the transformation of the rough PA NF membrane surface into a ridge-and-valley structure. Upon UV light irradiation, the spiropyran transformed into zwitterionic merocyanine, which had shown MgSO4 removal of >95% with water permeation rates of 6.5 L/(m²·h·bar). Alternatively, visible light was used to convert merocyanine to spiropyran, which achieved >95% of MgSO4 retention with a water flux of around 5.25 L/(m²·h·bar). The modified NF membranes showed higher chlorine resistance as well as a higher normalized water flux as compared to the reference membrane, without a loss of ion retention. All the NF membranes were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. This study demonstrates a simple and inexpensive method for the immobilization of molecules onto polymeric membranes, which may be applied in water softening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA