Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 61(7): 2159-2168, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33969894

RESUMO

BACKGROUND: The current best practices allow for the red blood cells (RBCs) to be stored for prolonged periods in blood banks worldwide. However, due to the individual-related variability in donated blood and RBCs continual degradation within transfusion bags, the quality of stored blood varies considerably. There is currently no method for assessing the blood product quality without compromising the sterility of the unit. This study demonstrates the feasibility of monitoring storage lesion of RBCs in situ while maintaining sterility using an optical approach. STUDY DESIGN AND METHODS: A handheld spatially offset Raman spectroscopy (RS) device was employed to non-invasively monitor hemolysis and metabolic changes in 12 red cell concentrate (RCC) units within standard sealed transfusion bags over 7 weeks of cold storage. The donated blood was analyzed in parallel by biochemical (chemical analysis, spectrophotometry, hematology analysis) and RS measurements, which were then correlated through multisource correlation analysis. RESULTS: Raman bands of lactate (857 cm-1 ), glucose (787 cm-1 ), and hemolysis (1003 cm-1 ) were found to correlate strongly with bioanalytical data over the length of storage, with correlation values 0.98 (95% confidence interval [CI]: 0.86-1.00; p = .0001), 0.95 (95% CI: 0.71-0.99; p = .0008) and 0.97 (95% CI: 0.79-1.00; p = .0004) respectively. DISCUSSION: This study demonstrates the potential of collecting information on the clinical quality of blood units without breaching the sterility using Raman technology. This could significantly benefit quality control of RCC units, patient safety and inventory management in blood banks and hospitals.


Assuntos
Preservação de Sangue/métodos , Temperatura Baixa , Eritrócitos/química , Análise Espectral Raman/métodos , Adulto , Glicemia/análise , Segurança do Sangue , Estudos de Viabilidade , Feminino , Glicólise , Hemólise , Humanos , Ácido Láctico/sangue , Masculino , Controle de Qualidade , Análise Espectral Raman/instrumentação , Fatores de Tempo
2.
Biotechnol Bioeng ; 115(2): 401-412, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030978

RESUMO

Cell death is the ultimate cause of productivity loss in bioreactors that are used to produce therapeutic proteins. We investigated the ability of Raman spectroscopy to detect the onset and types of cell death for Chinese Hamster Ovary (CHO) cells-the most widely used cell type for therapeutic protein production. Raman spectroscopy was used to compare apoptotic, necrotic, autophagic, and control CHO cells. Several specific nucleic acid-, protein-, and lipid-associated marker bands within the 650-850 cm-1 spectral region were identified that distinguished among cells undergoing different modes of cell death; supporting evidence was provided by principal component analysis (PCA) of the full spectral data. In addition to comparing the different modes of cell death, normal cells were compared to cells sorted at several stages of apoptosis, in order to explore the potential for early detection of apoptosis. Different stages of apoptosis could be distinguished via Raman spectroscopy, with multiple changes observed in nucleic acid peaks at early stages whereas an increase in lipid signals was a feature of late apoptosis/secondary necrosis.


Assuntos
Morte Celular/fisiologia , Técnicas Citológicas/métodos , Análise Espectral Raman/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Lipídeos/química , Ácidos Nucleicos , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA