Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Data ; 7(1): 199, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581312

RESUMO

The retina is a stratified layer of sensory neurons lining the posterior portion of the eye. In humans, fine detail and color vision are enabled by the macula, a central region of the retina dense in cone photoreceptors (PRs). Achromatic low light and peripheral vision are facilitated by rod PRs found with increasing density outside the macula in the peripheral retina. The outer retina is nourished by choroidal blood flow regulated by a single layer of intervening retinal pigment epithelial (RPE) cells. Existing human retinal transcriptome projects have been critical for studying aspects of retinal development and disease however, there are currently no publicly available data sets accurately describing the aging human central retina, peripheral retina, and supporting RPE/choroid. Here we used Illumina RNA sequencing (RNA-seq) analysis to characterize the mRNA transcriptome of rod and cone PR-enriched human retina as well as supporting macular RPE/choroid tissue. These data will be valuable to the vision research community for characterizing global changes in gene expression in clinically relevant ocular tissues.


Assuntos
Retina/metabolismo , Análise de Sequência de RNA , Transcriptoma , Envelhecimento , Corioide/metabolismo , Humanos , RNA Mensageiro/metabolismo , Epitélio Pigmentado da Retina/metabolismo
2.
Data Brief ; 25: 104006, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31223636

RESUMO

Transcriptome analysis using next generation sequencing (NGS) technology provides the capability to understand global changes in gene expression throughout a range of tissue samples. The nematode Caenorhabditis elegans (C. elegans) is a well-established genetic system used for analyzing a number of biological processes. C. elegans are a bacteria-eating soil nematode, and changes in bacterial diet have been shown to cause a number of physiological and molecular changes. Here we used Illumina RNA sequencing (RNA-seq) analysis to characterize the mRNA transcriptome of mixed C. elegans populations fed differing strains of bacteria to further understand dietary changes at the molecular level. Raw FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA) and have been assigned BioProject accession PRJNA412551.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA