Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918396

RESUMO

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Assuntos
Encéfalo , Proteoma , Sinapses , Animais , Camundongos , Encéfalo/metabolismo , Camundongos Transgênicos , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo
2.
Nat Neurosci ; 26(11): 1842-1847, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872304

RESUMO

Despite an unprecedented number of women entering neuroscience, and decades-long recruitment and retention efforts, women continue to be disproportionately underrepresented in European academic tenure-track faculty and leadership positions. This Perspective focuses on two major career points where women exhibit diminished representation: the transition from postdoctoral fellow to junior professor and the promotion to more senior (tenured) faculty positions. We discuss below recently implemented country-specific and Europe-wide initiatives supporting equal career progression and propose further concrete steps to be taken to break down the structural barriers that prevent women's progression up the academic career ladder as European neuroscientists.


Assuntos
Centros Médicos Acadêmicos , Docentes de Medicina , Humanos , Feminino , Mobilidade Ocupacional , Liderança
3.
Mol Cell ; 83(11): 1839-1855.e13, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267905

RESUMO

Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.


Assuntos
Endossomos , Proteínas rab5 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endossomos/metabolismo , Transporte Biológico , Endocitose/fisiologia
4.
Science ; 380(6647): eadf2018, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228199

RESUMO

The proteasome, the major protein-degradation machine in cells, regulates neuronal synapses and long-term information storage. Here, using super-resolution microscopy, we found that the two essential subcomplexes of the proteasome, the regulatory (19S) and catalytic (20S) particles, are differentially distributed within individual rat cortical neurons. We discovered an unexpected abundance of free 19S particles near synapses. The free neuronal 19S particles bind and deubiquitylate lysine 63-ubiquitin (Lys63-ub), a non-proteasome-targeting ubiquitin linkage. Pull-down assays revealed a significant overrepresentation of synaptic molecules as Lys63-ub interactors. Inhibition of the 19S deubiquitylase activity significantly altered excitatory synaptic transmission and reduced the synaptic availability of AMPA receptors at multiple trafficking points in a proteasome-independent manner. Together, these results reveal a moonlighting function of the regulatory proteasomal subcomplex near synapses.


Assuntos
Neurônios , Complexo de Endopeptidases do Proteassoma , Sinapses , Animais , Ratos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Sinapses/metabolismo , Ubiquitina/metabolismo , Lisina/metabolismo , Transmissão Sináptica
5.
FEBS Open Bio ; 13(7): 1164-1176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815235

RESUMO

Gaining a mechanistic understanding of the molecular pathways underpinning cellular and organismal physiology invariably relies on the perturbation of an experimental system to infer causality. This can be achieved either by genetic manipulation or by pharmacological treatment. Generally, the former approach is applicable to a wider range of targets, is more precise, and can address more nuanced functional aspects. Despite such apparent advantages, genetic manipulation (i.e., knock-down, knock-out, mutation, and tagging) in mammalian systems can be challenging due to problems with delivery, low rates of homologous recombination, and epigenetic silencing. The advent of CRISPR-Cas9 in combination with the development of robust differentiation protocols that can efficiently generate a variety of different cell types in vitro has accelerated our ability to probe gene function in a more physiological setting. Often, the main obstacle in this path of enquiry is to achieve the desired genetic modification. In this short review, we will focus on gene perturbation in mammalian cells and how editing and differentiation of pluripotent stem cells can complement more traditional approaches. Additionally, we introduce novel targeted protein degradation approaches as an alternative to DNA/RNA-based manipulation. Our aim is to present a broad overview of recent approaches and in vitro systems to study mammalian cell biology. Due to space limitations, we limit ourselves to providing the inexperienced reader with a conceptual framework on how to use these tools, and for more in-depth information, we will provide specific references throughout.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes , Animais , Sistemas CRISPR-Cas/genética , Proteólise , Edição de Genes/métodos , Mutação , Mamíferos/genética
6.
Neuron ; 111(5): 727-738.e8, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610397

RESUMO

Top-down projections convey a family of signals encoding previous experiences and current aims to the sensory neocortex, where they converge with external bottom-up information to enable perception and memory. Whereas top-down control has been attributed to excitatory pathways, the existence, connectivity, and information content of inhibitory top-down projections remain elusive. Here, we combine synaptic two-photon calcium imaging, circuit mapping, cortex-dependent learning, and chemogenetics in mice to identify GABAergic afferents from the subthalamic zona incerta as a major source of top-down input to the neocortex. Incertocortical transmission undergoes robust plasticity during learning that improves information transfer and mediates behavioral memory. Unlike excitatory pathways, incertocortical afferents form a disinhibitory circuit that encodes learned top-down relevance in a bidirectional manner where the rapid appearance of negative responses serves as the main driver of changes in stimulus representation. Our results therefore reveal the distinctive contribution of long-range (dis)inhibitory afferents to the computational flexibility of neocortical circuits.


Assuntos
Neocórtex , Zona Incerta , Camundongos , Animais , Neocórtex/fisiologia , Aprendizagem/fisiologia
7.
Mol Cell ; 83(3): 452-468, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669490

RESUMO

As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.


Assuntos
Biossíntese de Proteínas , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Methods Mol Biol ; 2603: 1-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370266

RESUMO

Cellular protein turnover-the net result of protein synthesis and degradation-is crucial to maintain protein homeostasis and cellular function under steady-state conditions and to enable cells to remodel their proteomes upon a perturbation. In brain cells, proteins are continuously turned over at different rates depending on various factors including cell type, subcellular localization, cellular environment, and neuronal activity. Here we describe a workflow for the analysis of protein synthesis, degradation, and turnover in primary cultured rat neurons and glia using dynamic/pulsed SILAC and mass spectrometry.


Assuntos
Neuroglia , Proteoma , Ratos , Animais , Proteoma/metabolismo , Proteólise , Neuroglia/metabolismo , Neurônios/metabolismo , Espectrometria de Massas , Marcação por Isótopo/métodos
9.
Sci Rep ; 12(1): 22561, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581654

RESUMO

Single-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.


Assuntos
Microscopia , Imagem Individual de Molécula , Microscopia/métodos , Imagem Individual de Molécula/métodos , Algoritmos , Análise por Conglomerados , Nanotecnologia
10.
Chem Asian J ; 17(24): e202201077, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36321802

RESUMO

Protein synthesis via ribosomes is a fundamental process in all known living organisms. However, it can be completely stalled by removing a single nucleobase (depurination) at the sarcin/ricin loop of the ribosomal RNA. In this work, we describe the preparation and optimization process of a fluorescent probe that can be used to visualize depurination. Starting from a fluorescent thiophene nucleobase analog, various RNA probes that fluoresce exclusively in the presence of a depurinated sarcin/ricin-loop RNA were designed and characterized. The main challenge in this process was to obtain a high fluorescence signal in the hybridized state with an abasic RNA strand, while keeping the background fluorescence low. With our new RNA probes, the fluorescence intensity and lifetime can be used for efficient monitoring of depurinated RNA.


Assuntos
Ricina , Ricina/metabolismo , Sondas RNA , RNA , Fluorescência , Purinas/metabolismo
11.
Mol Cell Neurosci ; 123: 103793, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396040

RESUMO

Research in the past twenty years or so has revealed that neurons synthesize and degrade proteins at their synapses to enable synaptic proteome remodelling on demand and in real-time. Here we provide a quantitative overview of the decentralized neuronal protein-turnover logistics. We first analyse the huge neuronal protein turnover demand that arises from subcellular compartments outside the cell body, followed by an overview of key quantities and modulation strategies in neuronal protein turnover logistics. In the end, we briefly review recent progress in neuronal local protein synthesis and summarize diverse protein-degradation mechanisms that are found near synapses.


Assuntos
Neurônios , Sinapses , Proteólise , Proteoma
12.
Curr Biol ; 32(14): R786-R788, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882201

RESUMO

The complicated arbors of neuronal dendrites and axons host synapses, the sites of information transfer and storage. A new paper describes how an important synaptic molecule, Calcium-calmodulin protein kinase 2, gets concentrated at synapses and how its local synthesis is important for memory in the fruit fly.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Sinapses , Axônios/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Proteínas Quinases/metabolismo , Sinapses/fisiologia
13.
J Vis Exp ; (182)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35499346

RESUMO

Understanding protein homeostasis in vivo is key to knowing how the cells work in both physiological and disease conditions. The present protocol describes in vivo labeling and subsequent purification of newly synthesized proteins using an engineered mouse line to direct protein labeling to specific cellular populations. It is an inducible line by Cre recombinase expression of L274G-Methionine tRNA synthetase (MetRS*), enabling azidonorleucine (ANL) incorporation to the proteins, which otherwise will not occur. Using the method described here, it is possible to purify cell-type-specific proteomes labeled in vivo and detect subtle changes in protein content due to sample complexity reduction.


Assuntos
Aminoacil-tRNA Sintetases , Proteoma , Aminoacil-tRNA Sintetases/genética , Animais , Cromatografia de Afinidade , Metionina , Camundongos , Proteostase
14.
iScience ; 25(3): 103868, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243231

RESUMO

Behavior is context-dependent and often modulated by an animal's internal state. In particular, different social contexts can alter anxiety levels and modulate social behavior. The vertebrate-specific neuropeptide parathyroid hormone 2 (pth2) is regulated by the presence of conspecifics in zebrafish. As its cognate receptor, the parathyroid hormone 2 receptor (pth2r), is widely expressed across the brain, we tested fish lacking the functional Pth2 peptide in several anxiety-related and social behavior paradigms. Here, we show that the propensity to react to sudden stimuli with an escape response was increased in pth2 -/- zebrafish, consistent with an elevated anxiety level. While overall social preference for conspecifics was maintained in pth2 -/- fish until the early juvenile stage, we found that both social preference and shoaling were altered later in development. The data presented suggest that the neuropeptide Pth2 modulates several conserved behaviors and may thus enable the animal to react appropriately in different social contexts.

15.
Nat Commun ; 13(1): 1224, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264577

RESUMO

During the co-translational assembly of protein complexes, a fully synthesized subunit engages with the nascent chain of a newly synthesized interaction partner. Such events are thought to contribute to productive assembly, but their exact physiological relevance remains underexplored. Here, we examine structural motifs contained in nucleoporins for their potential to facilitate co-translational assembly. We experimentally test candidate structural motifs and identify several previously unknown co-translational interactions. We demonstrate by selective ribosome profiling that domain invasion motifs of beta-propellers, coiled-coils, and short linear motifs may act as co-translational assembly domains. Such motifs are often contained in proteins that are members of multiple complexes (moonlighters) and engage with closely related paralogs. Surprisingly, moonlighters and paralogs assemble co-translationally in only some but not all of the relevant biogenesis pathways. Our results highlight the regulatory complexity of assembly pathways.


Assuntos
Proteínas , Ribossomos , Biossíntese de Proteínas , Domínios Proteicos , Proteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
16.
Bio Protoc ; 12(1): e4278, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35118171

RESUMO

In neurons, local translation in dendritic and axonal compartments allows for the fast and on-demand modification of the local proteome. As the last few years have witnessed dramatic advancements in our appreciation of the brain's neuronal diversity, it is increasingly relevant to understand how local translation is regulated according to cell type. To this end, both sequencing-based and imaging-based techniques have recently been reported. Here, we present a subcellular single cell RNA sequencing protocol that allows molecular quantification from the soma and dendrites of single neurons, and which can be scaled up for the characterization of several hundreds to thousands of neurons. Somata and dendrites of cultured neurons are dissected using laser capture microdissection, followed by cell lysis to release mRNA content. Reverse transcription is then conducted using an indexed primer that allows the downstream pooling of samples. The pooled cDNA library is prepared for and sequenced in an Illumina platform. Finally, the data generated are processed and converted into a gene vs. cells digital expression table. This protocol provides detailed instructions for both wet lab and bioinformatic steps, as well as insights into controls, data analysis, interpretations, and ways to achieve robust and reproducible results. Graphic abstract: Subcellular Single Cell RNA-seq in Neurons.

17.
STAR Protoc ; 3(1): 101063, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35005645

RESUMO

Cellular processes require tight and coordinated control of protein abundance, localization, and activity. One of the core mechanisms to achieve specific regulation of proteins is protein phosphorylation. Here we present a workflow to monitor protein abundance and phosphorylation in primary cultured neurons using liquid chromatography-coupled mass spectrometry. Our protocol provides a detailed guide on all steps for detection and label-free-quantification of phosphorylated and unmodified proteins of primary cortical neurons, including primary cell culture, phosphoproteomic sample preparation and data-processing, and evaluation. For complete details on the use and execution of this protocol, please refer to Desch et al. (2021).


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Neurônios/química , Fosforilação , Proteínas/análise , Proteômica/métodos
18.
Trends Neurosci ; 45(1): 41-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34489114

RESUMO

Neurons continuously adapt to external cues and challenges, including stimulation, plasticity-inducing signals and aging. These adaptations are critical for neuronal physiology and extended survival. Proteostasis is the process by which cells adjust their protein content to achieve the specific protein repertoire necessary for cellular function. Due to their complex morphology and polarized nature, neurons possess unique proteostatic requirements. Proteostatic control in axons and dendrites must be implemented through regulation of protein synthesis and degradation in a decentralized fashion, but at the same time, it requires integration, at least in part, in the soma. Here, we discuss current understanding of neuronal proteostasis, as well as open questions and future directions requiring further exploration.


Assuntos
Axônios , Neurônios , Envelhecimento/fisiologia , Axônios/fisiologia , Humanos , Neurônios/metabolismo , Biossíntese de Proteínas , Proteostase
19.
Chem Commun (Camb) ; 57(94): 12683-12686, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34780585

RESUMO

Herein, we present a new class of Q-dye molecular beacons (MBs) that can be locally activated with visible light in hippocampal neurons. Our novel architecture increases the available monitoring time for neuronal mRNA from several minutes to 14 hours, since a lower light-sampling rate is required for tracking.


Assuntos
Corantes Fluorescentes/química , Luz , Neurônios/química , RNA Mensageiro/análise , Humanos , Estrutura Molecular
20.
Nat Commun ; 12(1): 6127, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675203

RESUMO

Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.


Assuntos
Neurônios/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Feminino , Masculino , Neuritos/metabolismo , Neurópilo/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Ribossômicas/genética , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA