Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Knee Surg ; 35(10): 1138-1146, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33618402

RESUMO

Previous work has shown that the morphology of the knee joint is associated with the risk of primary anterior cruciate ligament (ACL) injury. The objective of this study is to analyze the effect of the meniscal height, anteroposterior distance of the lateral tibial plateau, and other morphological features of the knee joint on risk of ACL reconstruction failure. A nested case-control study was conducted on patients who underwent an ACL reconstruction surgery during the period between 2008 and 2015. Cases were individuals who failed surgery during the study period. Controls were patients who underwent primary ACL reconstruction surgery successfully during the study period. They were matched by age (±2 years), gender, surgeon, and follow-up time (±1 year). A morphological analysis of the knees was then performed using the preoperative magnetic resonance imaging scans. The anteroposterior distance of the medial and lateral tibial plateaus was measured on the T2 axial cuts. The nonweightbearing maximum height of the posterior horn of both menisci was measured on the T1 sagittal scans. Measurements of the medial and lateral tibial slope and meniscal slope were then taken from the sagittal T1 scans passing through the center of the medial and lateral tibial plateau. A binary logistic regression analysis was done to calculate crude and adjusted odds ratios (ORs) estimates. Thirty-four cases who underwent ACL revision surgery were selected and were matched with 68 controls. Cases had a lower lateral meniscal height (6.39 ± 1.2 vs. 7.02 ± 0.9, p = 0.008, power = 84.4%). No differences were found between the two groups regarding the bone slope of the lateral compartment (6.19 ± 4.8 vs. 6.92 ± 5.8, p = 0.552), the lateral meniscal slope (-0.28 ± 5.8 vs. -1.03 ± 4.7, p = 0.509), and the anteroposterior distance of the lateral tibial plateau (37.1 ± 5.4 vs. 35.6 ± 4, p = 0.165). In addition, no differences were found in the medial meniscus height between cases and controls (5.58 ± 1.2 vs. 5.81 ± 1.2, respectively, p = 0.394). There were also no differences between cases and controls involving the medial bone slope, medial meniscal slope, or anterior posterior distance of the medial tibial plateau. Female patients had a higher medial (4.8 degrees ± 3.2 vs. 3.3 ± 4.1, p = 0.047) and lateral (8.1 degrees ± 5.1 vs. 5.6 degrees ± 5.6, p = 0.031) tibial bone slope, and a lower medial (5.3 mm ± 1.0 vs. 6.1 mm ± 1.2, p = 0.001) and lateral (6.6 ± 1.0 vs. 7.0 ± 1.2, p = 0.035) meniscus height, and medial (4.3 ± 0.4 vs. 4.8 ± 0.4, p =0.000) and lateral (3.3 ± 0.3 vs. 3.9 ± 0.4, p = 0.000) anteroposterior distance than males, respectively.The adjusted OR of suffering an ACL reconstruction failure compared to controls was 5.1 (95% confidence interval [CI]: 1.7-14.9, p = 0.003) for patients who had a lateral meniscus height under 6.0 mm. The adjusted OR of suffering an ACL reconstruction failure was 2.4 (95% CI: 1.0-7.7, p = 0.01) for patients who had an anteroposterior distance above 35.0 mm. Patients with a lateral meniscal height under 6.0 mm have a 5.1-fold risk of suffering an ACL reconstruction failure compared to individuals who have a lateral meniscal height above 6.0 mm. Patients with a higher anteroposterior distance of the lateral tibial plateau also have a higher risk of ACL reconstruction failure.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Articulação do Joelho/anatomia & histologia , Meniscos Tibiais/anatomia & histologia , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/patologia , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Meniscos Tibiais/cirurgia , Razão de Chances , Estudos Retrospectivos , Tíbia/diagnóstico por imagem , Tíbia/patologia , Tíbia/cirurgia
2.
Orthop J Sports Med ; 9(9): 23259671211027543, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34568504

RESUMO

BACKGROUND: Supervised machine learning models in artificial intelligence (AI) have been increasingly used to predict different types of events. However, their use in orthopaedic surgery has been limited. HYPOTHESIS: It was hypothesized that supervised learning techniques could be used to build a mathematical model to predict primary anterior cruciate ligament (ACL) injuries using a set of morphological features of the knee. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Included were 50 adults who had undergone primary ACL reconstruction between 2008 and 2015. All patients were between 18 and 40 years of age at the time of surgery. Patients with a previous ACL injury, multiligament knee injury, previous ACL reconstruction, history of ACL revision surgery, complete meniscectomy, infection, missing data, and associated fracture were excluded. We also identified 50 sex-matched controls who had not sustained an ACL injury. For all participants, we used the preoperative magnetic resonance images to measure the anteroposterior lengths of the medial and lateral tibial plateaus as well as the lateral and medial bone slope (LBS and MBS), lateral and medial meniscal height (LMH and MMH), and lateral and medial meniscal slope (LMS and MMS). The AI predictor was created using Matlab R2019b. A Gaussian naïve Bayes model was selected to create the predictor. RESULTS: Patients in the ACL injury group had a significantly increased posterior LBS (7.0° ± 4.7° vs 3.9° ± 5.4°; P = .008) and LMS (-1.7° ± 4.8° vs -4.0° ± 4.2°; P = .002) and a lower MMH (5.5 ± 0.1 vs 6.1 ± 0.1 mm; P = .006) and LMH (6.9 ± 0.1 vs 7.6 ± 0.1 mm; P = .001). The AI model selected LBS and MBS as the best possible predictive combination, achieving 70% validation accuracy and 92% testing accuracy. CONCLUSION: A prediction model for primary ACL injury, created using machine learning techniques, achieved a >90% testing accuracy. Compared with patients who did not sustain an ACL injury, patients with torn ACLs had an increased posterior LBS and LMS and a lower MMH and LMH.

3.
Orthop J Sports Med ; 9(4): 2325967121998310, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33948446

RESUMO

BACKGROUND: The mechanism for traumatic ruptures of the native anterior cruciate ligament (ACL) is frequently a noncontact injury involving a valgus moment with internal rotation of the tibia. The abnormal rotation and translation of the lateral femoral condyle posteroinferiorly relative to the lateral tibial plateau is thought to be related to the geometry of the tibial plateau. PURPOSE/HYPOTHESIS: The purpose of the study was to mathematically model the posterior tibial plateau geometry in patients with ACL injuries and compare it with that of matched controls. The hypothesis was that increased convexity and steepness of the posterior aspect of the lateral plateau would subject knees to higher forces, leading to a potentially higher risk of ACL injury. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: We mathematically modeled the posterior curvature of the lateral tibial plateau in 64 patients with ACL injuries and 68 matched controls. Using sagittal magnetic resonance imaging scans of the knee, points on the articular cartilage of the posterolateral tibial plateau were selected and curve-fitted to a power function (y = a × xn ). For coefficient a and coefficient n, both variables modulated the shape of the curve, where a larger magnitude represented an increase in slope steepness. Groups were compared using a Mann-Whitney test and α < .05. RESULTS: There was a significant difference in surface geometry between the patients with ACL injuries and matched controls. The equation coefficients were significantly larger in the patients with ACL injuries: coefficient a (ACL injury, 0.9 vs control, 0.68; P < .0001) and coefficient n (ACL injury, 0.34 vs control, 0.30; P = .07). For coefficient a, there was a 78.9% sensitivity, 77.5% specificity, and odds ratio of 12.6 (95% CI, 5.5-29.0) for ACL injury using a cutoff coefficient a = .78. CONCLUSION: Patients with ACL injuries had a significantly greater posterolateral plateau slope. The steeper drop off may play a role in higher anterior translation forces, coupled with internal rotation torques on the knee in noncontact injury, which could increase ACL strain and predispose to ACL injury.

4.
Arthrosc Sports Med Rehabil ; 2(4): e361-e368, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32875301

RESUMO

PURPOSE: To examine the ability of surgeons to identify the osseous landmarks associated with the femoral anterior cruciate ligament (ACL) footprint and locate optimal tunnel placement on 3-dimensional (3D) printed models compared with intraoperative placement. METHODS: Twelve sports fellowship-trained orthopaedic surgeons were asked to identify a femoral landmark and an ACL footprint on 10 different 3D printed knees. The 3D models were made based on 20 real patients with different anatomical morphology who later received ACL reconstructive surgery using independent drilling. ImageJ software was used to quantify the measurements, which were then analyzed using descriptive statistics. RESULTS: Overall, none of the surgeons were able to consistently identify the junction of the bony ridges. The mean error per participant ranged from 2.81 to 7.34 mm in the proximal direction (P = 3.30e-05) and from 2.42 to 8.05 mm in the posterior direction (P =4.88e-12). None of the surgeons were able to appropriately identify the center of the femoral footprint on the anatomic 3D models. The difference between the center of the footprint surgeons identified on the 3D model and the tunnel graft location in surgery was significantly different (P = .0046). On average, the magnitude of the error when the surgeons performed the actual surgery was 3.72 ± 2.43 mm, whereas on the 3D models it was 5.82 ± 1.97 mm. CONCLUSIONS: Experienced sports fellowship-trained orthopaedic surgeons were unable to correctly identify the junction of the intercondylar and bifurcate ridges and the native ACL footprint on 3D models. Operatively placed tunnels were more accurate implying that looking either through a scope or soft-tissue landmarks play a significant role in surgeons ACL footprint localization. CLINICAL RELEVANCE: The graft position for ACL reconstruction plays an important role on the kinematics of the knee. This paper shows that soft tissue landmarks are needed to provide reliable reference points for reconstruction.

5.
Orthop J Sports Med ; 8(3): 2325967120905795, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32201706

RESUMO

BACKGROUND: Femoral tunnel positioning in anterior cruciate ligament reconstruction (ACLR) is an intricate procedure that requires highly specific surgical skills. PURPOSE: To report the ability of residents to identify femoral landmarks and the native ACL footprint before and after a structured formal teaching session as a reflection of overall surgical skill training for orthopaedic surgery residents in Canada. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 13 senior orthopaedic residents were asked to identify a femoral landmark and an ACL footprint on ten 3-dimensional (3D)-printed knee models before and after a teaching session during the fall of 2018. The 3D models were made based on actual patients with different anatomic morphologic features. ImageJ software was used to quantify the measurements, which were then analyzed through use of descriptive statistics. RESULTS: Before and after the teaching session, residents attempted to identify a specific anatomic location (bifurcate and intercondylar ridge intersection) with a mean error per participant ranging from 5.00 to 10.95 mm and 4.79 to 12.13 mm in magnitude, respectively. Furthermore, before and after the teaching session, residents identified the specific position to perform the surgical procedure (ACL femoral footprint), with a mean error per participant ranging from 4.58 to 8.80 mm and 3.87 to 11.07 mm in magnitude, respectively. The teaching session resulted in no significant improvement in identification of either the intersection of the bifurcate and intercondylar ridges (P = .9343 in the proximal-distal axis and P = .8133 in the anteroposterior axis) or the center of the femoral footprint (P = .7761 in the proximal-distal axis and P = .9742 in the anteroposterior axis). CONCLUSION: Although a formal teaching session was combined with a hands-on session that entailed real surgical instrumentation and fresh cadaveric specimens, the intervention seemed to have no direct impact on senior residents' performance or their ability to demonstrate the material taught. This puts into question the format and efficacy of present teaching methods. Also, it is possible that the 3D spatial perception required to perform these skills is not something that can be taught effectively through a teaching session or at all. Further investigation is required regarding the effectiveness and application of surgical skill laboratories and simulations on the competencies of orthopaedic residents.

6.
Bone Joint J ; 101-B(12): 1479-1488, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31786992

RESUMO

AIMS: Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery, augmented reality (AR) may become an important tool for surgeons in the future. By superimposing a digital image on a user's view of the physical world, this technology shows great promise in orthopaedics. The aim of this review is to investigate the current and potential uses of AR in orthopaedics. MATERIALS AND METHODS: A systematic review of the PubMed, MEDLINE, and Embase databases up to January 2019 using the keywords 'orthopaedic' OR 'orthopedic AND augmented reality' was performed by two independent reviewers. RESULTS: A total of 41 publications were included after screening. Applications were divided by subspecialty: spine (n = 15), trauma (n = 16), arthroplasty (n = 3), oncology (n = 3), and sports (n = 4). Out of these, 12 were clinical in nature. AR-based technologies have a wide variety of applications, including direct visualization of radiological images by overlaying them on the patient and intraoperative guidance using preoperative plans projected onto real anatomy, enabling hands-free real-time access to operating room resources, and promoting telemedicine and education. CONCLUSION: There is an increasing interest in AR among orthopaedic surgeons. Although studies show similar or better outcomes with AR compared with traditional techniques, many challenges need to be addressed before this technology is ready for widespread use. Cite this article: Bone Joint J 2019;101-B:1479-1488.


Assuntos
Realidade Aumentada , Procedimentos Ortopédicos/métodos , Cirurgia Assistida por Computador/métodos , Atitude do Pessoal de Saúde , Humanos , Procedimentos Ortopédicos/tendências , Ortopedia/métodos , Ortopedia/tendências , Cirurgiões , Cirurgia Assistida por Computador/tendências
7.
West J Emerg Med ; 16(1): 114-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25671019

RESUMO

Traumatic dislocations of the shoulder commonly present to emergency departments (EDs). Immediate closed reduction of both anterior and posterior glenohumeral dislocations is recommended and is frequently performed in the ED. Recurrence of dislocation is common, as anteroinferior labral tears (Bankart lesions) are present in many anterior shoulder dislocations.14,15,18,23 Immobilization of the shoulder following closed reduction is therefore recommended; previous studies support the use of immobilization with the shoulder in a position of external rotation, for both anterior and posterior shoulder dislocations.7-11,19 In this study, we present a technique for assembling a low-cost external rotation shoulder brace using materials found in most hospitals: cotton roll, stockinette, and shoulder immobilizers. This brace is particularly suited for the uninsured patient, who lacks the financial resources to pay for a pre-fabricated brace out of pocket. We also performed a cost analysis for our low-cost external rotation shoulder brace, and a cost comparison with pre-fabricated brand name braces. At our institution, the total materials cost for our brace was $19.15. The cost of a pre-fabricated shoulder brace at our institution is $150 with markup, which is reimbursed on average at $50.40 according to our hospital billing data. The low-cost external rotation shoulder brace is therefore a more affordable option for the uninsured patient presenting with acute shoulder dislocation.


Assuntos
Braquetes/economia , Imobilização/instrumentação , Luxação do Ombro/terapia , Humanos , Imobilização/métodos , Manipulação Ortopédica , Michigan , Rotação , Luxação do Ombro/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA