Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 82(1): 167-80, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24698274

RESUMO

Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Mutação/genética , Vesículas Secretórias/metabolismo , Proteína rab2 de Ligação ao GTP/metabolismo , Análise de Variância , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Mapeamento Cromossômico , Clonagem Molecular , Endossomos/metabolismo , Endossomos/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Transporte Proteico , Vesículas Secretórias/genética , Vesículas Secretórias/ultraestrutura , Proteína rab2 de Ligação ao GTP/genética
2.
Dev Biol ; 357(1): 235-47, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21740898

RESUMO

Cilia are ubiquitous cell surface projections that mediate various sensory- and motility-based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. To identify new components required for cilium biogenesis and function, we sought to further define and validate the transcriptional targets of DAF-19, the ciliogenic C. elegans RFX transcription factor. Transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using embryos staged to when the cell types developing cilia in the worm, the ciliated sensory neurons (CSNs), still differentiate. Comparisons between the two populations revealed 881 differentially regulated genes with greater than a 1.5-fold increase or decrease in expression. A subset of these was confirmed by quantitative RT-PCR. Transgenic worms expressing transcriptional GFP fusions revealed CSN-specific expression patterns for 11 of 14 candidate genes. We show that two uncharacterized candidate genes, termed dyf-17 and dyf-18 because their corresponding mutants display dye-filling (Dyf) defects, are important for ciliogenesis. DYF-17 localizes at the base of cilia and is specifically required for building the distal segment of sensory cilia. DYF-18 is an evolutionarily conserved CDK7/CCRK/LF2p-related serine/threonine kinase that is necessary for the proper function of intraflagellar transport, a process critical for cilium biogenesis. Together, our microarray study identifies targets of the evolutionarily conserved RFX transcription factor, DAF-19, providing a rich dataset from which to uncover-in addition to DYF-17 and DYF-18-cellular components important for cilium formation and function.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Cílios/metabolismo , Quinases Ciclina-Dependentes/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
PLoS Biol ; 7(12): e1000265, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20027209

RESUMO

In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf) mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Locomoção , Neurônios Motores/metabolismo , Contração Muscular , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Dados de Sequência Molecular , Mutação , Receptores Nicotínicos/genética , Transmissão Sináptica , Xenopus , Ácido gama-Aminobutírico/metabolismo
4.
J Cell Biol ; 183(5): 881-92, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047463

RESUMO

Synaptic vesicles must be recycled to sustain neurotransmission, in large part via clathrin-mediated endocytosis. Clathrin is recruited to endocytic sites on the plasma membrane by the AP2 adaptor complex. The medium subunit (micro2) of AP2 binds to cargo proteins and phosphatidylinositol-4 ,5-bisphosphate on the cell surface. Here, we characterize the apm-2 gene (also called dpy-23), which encodes the only micro2 subunit in the nematode Caenorhabditis elegans. APM-2 is highly expressed in the nervous system and is localized to synapses; yet specific loss of APM-2 in neurons does not affect locomotion. In apm-2 mutants, clathrin is mislocalized at synapses, and synaptic vesicle numbers and evoked responses are reduced to 60 and 65%, respectively. Collectively, these data suggest AP2 micro2 facilitates but is not essential for synaptic vesicle recycling.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Clatrina/metabolismo , Endocitose , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/genética , Mutação , Junção Neuromuscular/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo
5.
J Cell Biol ; 180(3): 483-91, 2008 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18250196

RESUMO

Docking to the plasma membrane prepares vesicles for rapid release. Here, we describe a mechanism for dense core vesicle docking in neurons. In Caenorhabditis elegans motor neurons, dense core vesicles dock at the plasma membrane but are excluded from active zones at synapses. We have found that the calcium-activated protein for secretion (CAPS) protein is required for dense core vesicle docking but not synaptic vesicle docking. In contrast, we see that UNC-13, a docking factor for synaptic vesicles, is not essential for dense core vesicle docking. Both the CAPS and UNC-13 docking pathways converge on syntaxin, a component of the SNARE (soluble N-ethyl-maleimide-sensitive fusion protein attachment receptor) complex. Overexpression of open syntaxin can bypass the requirement for CAPS in dense core vesicle docking. Thus, CAPS likely promotes the open state of syntaxin, which then docks dense core vesicles. CAPS function in dense core vesicle docking parallels UNC-13 in synaptic vesicle docking, which suggests that these related proteins act similarly to promote docking of independent vesicle populations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Neurônios Motores/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Caenorhabditis elegans/ultraestrutura , Sinalização do Cálcio/fisiologia , Proteínas de Transporte , Membrana Celular/ultraestrutura , Fusão de Membrana/fisiologia , Neurônios Motores/ultraestrutura , Vesículas Secretórias/ultraestrutura , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia
6.
Dev Biol ; 313(1): 384-97, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18037397

RESUMO

Growth cones are dynamic membrane structures that migrate to target tissue by rearranging their cytoskeleton in response to environmental cues. The lipid phosphatidylinositol (4,5) bisphosphate (PIP(2)) resides on the plasma membrane of all eukaryotic cells and is thought to be required for actin cytoskeleton rearrangements. Thus PIP(2) is likely to play a role during neuron development, but this has never been tested in vivo. In this study, we have characterized the PIP(2) synthesizing enzyme Type I PIP kinase (ppk-1) in Caenorhabditis elegans. PPK-1 is strongly expressed in the nervous system, and can localize to the plasma membrane. We show that PPK-1 purified from C. elegans can generate PIP(2)in vitro and that overexpression of the kinase causes an increase in PIP(2) levels in vivo. In developing neurons, PPK-1 overexpression leads to growth cones that become stalled, produce ectopic membrane projections, and branched axons. Once neurons are established, PPK-1 overexpression results in progressive membrane overgrowth and degeneration during adulthood. These data suggest that overexpression of the Type I PIP kinase inhibits growth cone collapse, and that regulation of PIP(2) levels in established neurons may be important to maintain structural integrity and prevent neuronal degeneration.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Cones de Crescimento/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
7.
Curr Biol ; 17(18): 1595-600, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17825559

RESUMO

Synaptojanin is a lipid phosphatase required to degrade phosphatidylinositol 4,5 bisphosphate (PIP(2)) at cell membranes during synaptic vesicle recycling. Synaptojanin mutants in C. elegans are severely uncoordinated and are depleted of synaptic vesicles, possibly because of accumulation of PIP(2). To identify proteins that act downstream of PIP(2) during endocytosis, we screened for suppressors of synaptojanin mutants in the nematode C. elegans. A class of uncoordinated mutants called "fainters" partially suppress the locomotory, vesicle depletion, and electrophysiological defects in synaptojanin mutants. These suppressor loci include the genes for the NCA ion channels, which are homologs of the vertebrate cation leak channel NALCN, and a novel gene called unc-80. We demonstrate that unc-80 encodes a novel, but highly conserved, neuronal protein required for the proper localization of the NCA-1 and NCA-2 ion channel subunits. These data suggest that activation of the NCA ion channel in synaptojanin mutants leads to defects in recycling of synaptic vesicles.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Endocitose/fisiologia , Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Monoéster Fosfórico Hidrolases/genética , Animais , Axônios/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Endocitose/genética , Proteínas de Fluorescência Verde/análise , Canais Iônicos/análise , Modelos Genéticos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismo
8.
J Neurosci ; 27(23): 6150-62, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17553987

RESUMO

Previous studies indicated that CAPS (calcium-dependent activator protein for secretion) functions as an essential component for the Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells. However, recent mouse knock-out studies suggested an alternative role in the vesicular uptake or storage of catecholamines. To genetically assess the functional role of CAPS, we characterized the sole Caenorhabditis elegans CAPS ortholog UNC-31 (uncoordinated family member) and determined its role in dense-core vesicle-mediated peptide secretion and in synaptic vesicle recycling. Novel assays for dense-core vesicle exocytosis were developed by expressing a prepro-atrial natriuretic factor-green fluorescent protein fusion protein in C. elegans. unc-31 mutants exhibited reduced peptide release in vivo and lacked evoked peptide release in cultured neurons. In contrast, cultured neurons from unc-31 mutants exhibited normal stimulated synaptic vesicle recycling measured by FM4-64 [N-(3-triethylammoniumpropyl)-4-(6-(4-diethylamino)phenyl)hexatrienyl)pyridinium dibromide] dye uptake. Conversely, UNC-13, which exhibits sequence homology to CAPS/UNC-31, was found to be essential for synaptic vesicle but not dense-core vesicle exocytosis. These findings indicate that CAPS/UNC-31 function is not restricted to catecholaminergic vesicles but is generally required for and specific to dense-core vesicle exocytosis. Our results suggest that CAPS/UNC-31 and UNC-13 serve parallel and dedicated roles in dense-core vesicle and synaptic vesicle exocytosis, respectively, in the C. elegans nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte , Dados de Sequência Molecular , Vesículas Secretórias/genética , Vesículas Sinápticas/genética
9.
Nat Neurosci ; 10(7): 846-53, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558401

RESUMO

Mutations in unc-46 in Caenorhabditis elegans cause defects in all behaviors that are mediated by GABA. Here we show that UNC-46 is a sorting factor that localizes the vesicular GABA transporter to synaptic vesicles. The UNC-46 protein is related to the LAMP (lysosomal associated membrane protein) family of proteins and is localized at synapses. In unc-46 mutants, the vesicular transporter is not found specifically in synaptic vesicles but rather is diffusely spread along the axon. Mislocalization of the transporter severely reduces the frequency of miniature currents, but the remaining currents are normal in amplitude. Because the number of synaptic vesicles is not depleted, it is likely that only a fraction of vesicles harbor the transporter in unc-46 mutants. Our data indicate that the transporter and UNC-46 have mutual roles in sorting. The vesicular GABA transporter recruits UNC-46 to synaptic vesicle precursors in the cell body, and UNC-46 sorts the transporter at the cell body and during endocytosis at the synapse.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Clonagem Molecular , DNA Complementar/biossíntese , DNA Complementar/genética , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Atividade Motora/fisiologia , Mutação/genética , Mutação/fisiologia , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/fisiologia
10.
Trends Neurosci ; 27(7): 407-14, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15219740

RESUMO

GABA neurotransmission requires a specialized set of proteins to synthesize, transport or respond to GABA. This article reviews results from a genetic strategy in the nematode Caenorhabditis elegans designed to identify the genes responsible for these activities. These studies identified mutations in genes encoding five different proteins: the biosynthetic enzyme for GABA, the vesicular GABA transporter, a transcription factor that determines GABA neuron identity, a classic inhibitory GABA receptor and a novel excitatory GABA receptor. This review discusses the strategy employed to identify these genes as well as the conclusions about GABA transmission derived from study of the mutant phenotypes.


Assuntos
Caenorhabditis elegans/fisiologia , Receptores de GABA/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Sistema Nervoso
12.
Evolution ; 47(5): 1396-1406, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28564885

RESUMO

We are using patterns of cuticle specialization in Drosophila larvae as models to investigate the molecular, genetic, and developmental bases of morphological evolution. Members of the virilis species group differ markedly from one another in the distribution of hairs on the dorsal surface of first instar larvae. In particular, characteristic bands of hairs cover about 20% of each trunk segment in some species but about 70% in others. These major types do not correlate with recently proposed phylogenetic relationships, suggesting that similar phenotypes have arisen independently in different lineages. The patterns of expression of several genes that control or reflect intrasegmental patterning are indistinguishable in species with very different cuticle morphologies. We conclude that, in this case, morphology probably has evolved via altered response to a conserved molecular prepattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA