Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518988

RESUMO

High concentrations of low-density particles may cause effects in acute inhalation toxicity studies which can be easily underestimated or misinterpreted following strictly the OECD TG 436, i.e., limited parameters as mortality and gross lesions will be evaluated only. Seven particle types (synthetic amorphous silica (SAS) HMDZ-SAS, silica gel, pyrogenic SAS, and precipitated SAS, calcium carbonate, aluminum oxide pyrogenic alumina, organic red pigment) were chosen at the highest technically feasible concentration of approximately 500 mg/m3 for acute inhalation studies with an expanded endpoint setup. Therefore additional parameters and a thorough histopathological evaluation of an extensive set of organs, including the respiratory tract emphasizing the nasal cavities were added. Six Crl:WI rats per study were exposed for four hours from which three animals were sacrificed after 24 hours and three animals after 14 days. HMDZ-SAS caused early death in all animals due to blockage of the nasal passages caused by its hydrophobicity. For all other Si-containing compounds, histology revealed minor inflammatory and reactive lesions in lungs after 24 hours that were still present after 14 days, except in silica gel-treated animals. After 14 days, for pyrogenic SAS, precipitated SAS, and pyrogenic alumina, granulomas formed in the BALT and lung-associated lymph nodes. In contrast, the calcium carbonate induced almost no findings, and the red pigment (also tested for the additional dose of 1000 mg/m3) stuck partially to the nasal mucosa without causing pathological damage and partly entered the lungs without showing any adverse effects. The results of the present study highlight the advantage of improving the rather simple study design of acute inhalation studies by implementing an extended study design.

3.
Toxicol Lett ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38159619

RESUMO

Rat lungs and lung-associated lymph nodes from 14 inhalation studies with chemically different particulate materials were histopathologically re-evaluated, and the bronchoalveolar lavage fluid (BALF) data and lung burden analyses were compared. All investigated substances caused similar lesions. For most substances, 1 mg/m3 of respirable particulate matter was established as the borderline for adverse morphological changes after the 90-day exposure period, confirmed by the increase in polymorphonuclear neutrophils in BALF. Possible reversibility was demonstrated when recovery groups are included in the study especially allowing the differentiation between regeneration or progressing of inflammatory changes during the recovery period. It was concluded, that the major driver of toxicity is not an intrinsic chemical property of the particle but a particle effect. Concerning classification for specific target organ toxicant (STOT) repeated exposure (RE), this paper highlights that merely comparing the lowest concentration, at which adverse effects were observed, with the Classification Labelling and Packaging (CLP) regulation (EC) no. 1272/2008 guidance values is inappropriate and might lead to a STOT classification under CLP for a large part of the substances discussed in this paper, on the basis of typically mild to moderate findings in rat lung and lung-associated lymph nodes on day 1 after exposure. An in-depth evaluation of the pathologic findings is required and an expert judgement has to be included in the decision on classification and labeling, evaluating the type and severity of effects and comparing these with the classification criteria.

5.
Toxicol Lett ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36806657

RESUMO

Inhalation toxicity testing of particulate materials is mandated for classification. According to CLP, particulate materials should be tested as marketed and many particulate materials are marketed as non-respirable particles. However, OECD TG 413 requires exposure to particle sizes that are respirable and reach the alveoli. The requirement for exposure of rats to respirable particles is thus in contrast to CLP and requires the application of high shear forces. The exposure to artificially small particles causes a number of issues that hamper the interpretation of the results of the testing. These issues are aerosol altering in the exposure system, assessment of the adversity of the inflammatory lung responses, inclusion of recovery groups, and extrapolation of the results to humans exposed under occupational condition. In addition, effects of many particulate materials after testing according to OECD 413 are not intrinsic properties, but a general reaction of the lung to the deposited material, show very similar NOAECs for chemical diverse materials, and often are completely reversible.

6.
Front Public Health ; 10: 909196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812489

RESUMO

The present study summarizes the current literature on the presence and the structure of biogenic amorphous silica (BAS) in nature. Based on this review, it is shown that BAS is ubiquitous in nature and exhibits a structure that cannot be differentiated from the structure of synthetic amorphous silica (SAS). The structural similarity of BAS and SAS is further supported by our investigations-in particular, specific surface area (BET) and electron microscope techniques-on oat husk and common horsetail. Many food products containing BAS are considered to be beneficial to health. In the context of the use of SAS in specific applications (e.g., food, feed, and cosmetics), this is of particular interest for discussions of the safety of these uses.


Assuntos
Equisetum , Avena , Dióxido de Silício/química
7.
Front Public Health ; 10: 902799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801234

RESUMO

Synthetic amorphous silica (SAS) is industrially relevant material whose bioactivity in vitro is strongly diminished, for example, by protein binding to the particle surface. Here, we investigated the in vitro bioactivity of fourteen SAS (pyrogenic, precipitated, or colloidal), nine of which were surface-treated with organosilanes, using alveolar macrophages as a highly sensitive test system. Dispersion of the hydrophobic SAS required pre-wetting with ethanol and extensive ultrasonic treatment in the presence of 0.05% BSA (Protocol 1). Hydrophilic SAS was suspended by moderate ultrasonic treatment (Protocol 2) and also by Protocol 1. The suspensions were administered to NR8383 alveolar macrophages under serum-free conditions for 16 h, and the release of LDH, GLU, H2O2, and TNFα was measured in cell culture supernatants. While seven surface-treated hydrophobic SAS exhibited virtually no bioactivity, two materials (AEROSIL® R 504 and AEROSIL® R 816) had minimal effects on NR8383 cells. In contrast, non-treated SAS elicited considerable increases in LDH, GLU, and TNFα, while the release of H2O2 was low except for CAB-O-SIL® S17D Fumed Silica. Dispersing hydrophilic SAS with Protocol 1 gradually reduced the bioactivity but did not abolish it. The results show that hydrophobic coating reagents, which bind covalently to the SAS surface, abrogate the bioactivity of SAS even under serum-free in vitro conditions. The results may have implications for the hazard assessment of hydrophobic surface-treated SAS in the lung.


Assuntos
Compostos de Organossilício , Dióxido de Silício , Peróxido de Hidrogênio/farmacologia , Indicadores e Reagentes , Tamanho da Partícula , Dióxido de Silício/química , Fator de Necrose Tumoral alfa
8.
Front Public Health ; 10: 907078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719607

RESUMO

The aim of the present study was to understand the mechanism of lethality associated with high dose inhalation of a low-density hydrophobic surface-treated SAS observed in some acute inhalation studies. It was demonstrated that physical obstruction of the upper respiratory tract (nasal cavities) caused the effects observed. Hydrophobic surface-treated SAS was inhaled (flow-past, nose-only) by six Wistar rats (three males and three females) in an acute toxicity study at a concentration of ~500 mg/m3 for an intended 4-hr exposure. Under the conditions of the test set-up, the concentration applied was found to be the highest that can be delivered to the test animal port without significant alteration of the aerosol size distribution over time. None of the test- material-exposed animals survived the planned observation time of 4 h; three animals died between 2 34 h after starting exposure and cessation of exposure at 3 14 h, two died after transfer to their cages and the remaining animal was sacrificed due to its poor condition and welfare considerations. Histology accomplished by energy dispersive X-ray (EDX) analysis demonstrated that test material particles agglomerated and formed a gel-like substrate that ultimately blocked the upper respiratory airways, which proved fatal for the rat as an obligatory nose breather. This observation is in line with the findings reported by Hofmann et al. showing a correlation between lethality and hydrophobicity determined by contact angle measurement. The aerosol characterizations associated with this study are provided in detail by Wessely et al.


Assuntos
Exposição por Inalação , Dióxido de Silício , Aerossóis , Animais , Asfixia , Feminino , Interações Hidrofóbicas e Hidrofílicas , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Masculino , Cavidade Nasal/química , Ratos , Ratos Wistar , Dióxido de Silício/análise , Dióxido de Silício/toxicidade
9.
Nanomaterials (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802450

RESUMO

Various cell types are compromised by synthetic amorphous silica (SAS) if they are exposed to SAS under protein-free conditions in vitro. Addition of serum protein can mitigate most SAS effects, but it is not clear whether this is solely caused by protein corona formation and/or altered particle uptake. Because sensitive and reliable mass spectrometric measurements of SiO2 NP are cumbersome, quantitative uptake studies of SAS at the cellular level are largely missing. In this study, we combined the comparison of SAS effects on alveolar macrophages in the presence and absence of foetal calf serum with mass spectrometric measurement of 28Si in alkaline cell lysates. Effects on the release of lactate dehydrogenase, glucuronidase, TNFα and H2O2 of precipitated (SIPERNAT® 50, SIPERNAT® 160) and fumed SAS (AEROSIL® OX50, AEROSIL® 380 F) were lowered close to control level by foetal calf serum (FCS) added to the medium. Using a quantitative high resolution ICP-MS measurement combined with electron microscopy, we found that FCS reduced the uptake of particle mass by 9.9% (SIPERNAT® 50) up to 83.8% (AEROSIL® OX50). Additionally, larger particle agglomerates were less frequent in cells in the presence of FCS. Plotting values for lactate dehydrogenase (LDH), glucuronidase (GLU) or tumour necrosis factor alpha (TNFα) against the mean cellular dose showed the reduction of bioactivity with a particle sedimentation bias. As a whole, the mitigating effects of FCS on precipitated and fumed SAS on alveolar macrophages are caused by a reduction of bioactivity and by a lowered internalization, and both effects occur in a particle specific manner. The method to quantify nanosized SiO2 in cells is a valuable tool for future in vitro studies.

10.
Toxicol In Vitro ; 67: 104903, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32473318

RESUMO

For several decades, food-grade synthetic amorphous silica (SAS) have been used as a technological additive to reduce caking of food powders. Human exposure is thus inevitable and safety concerns are taken seriously. The toxicity of silica in general and SAS in particular has been studied extensively. Overall, there is little evidence that food-grade SAS pose any health risks to humans. However, from the available data it was often not clear which type of silica was used. Accordingly, the latest report of the European food safety authority requested additional toxicity data for well-characterised "real food-grade SAS". To close this gap, we screened a panel of ten well-defined, food-grade SAS for potential adverse effects on differentiated Caco-2 cells. Precipitated and fumed SAS with low, intermediate and high specific surface area were included to determine structure-activity relationships. In a physiological dose-range up to 50 µg/ml and 48 h of incubation, none of the materials induced adverse effects on differentiated Caco-2 cells. This held true for endpoints of acute cytotoxicity as well as epithelial specific measures of barrier integrity. These results showed that despite considerable differences in production routes and material characteristics, food-relevant SAS did not elicit acute toxicity responses in intestinal epithelial cells.


Assuntos
Aditivos Alimentares/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Células CACO-2 , Diferenciação Celular , Aditivos Alimentares/química , Inocuidade dos Alimentos , Humanos , Mucosa Intestinal/metabolismo , Modelos Biológicos , Nanopartículas/química , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Propriedades de Superfície
12.
Nanomaterials (Basel) ; 9(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583541

RESUMO

Synthetic amorphous silica (SAS) constitute a large group of industrial nanomaterials (NM). Based on their different production processes, SAS can be distinguished as precipitated, fumed, gel and colloidal. The biological activity of SAS, e.g., cytotoxicity or inflammatory potential in the lungs is low but has been shown to depend on the particle size, at least for colloidal silica. Therefore, the preparation of suspensions from highly aggregated or agglomerated SAS powder materials is critical. Here we analyzed the influence of ultrasonic dispersion energy on the biologic activity of SAS using NR8383 alveolar macrophage (AM) assay. Fully characterized SAS (7 precipitated, 3 fumed, 3 gel, and 1 colloidal) were dispersed in H2O by stirring and filtering through a 5 µm filter. Aqueous suspensions were sonicated with low or high ultrasonic dispersion (USD) energy of 18 or 270 kJ/mL, respectively. A dose range of 11.25⁻90 µg/mL was administered to the AM under protein-free conditions to detect particle-cell interactions without the attenuating effect of proteins that typically occur in vivo. The release of lactate dehydrogenase (LDH), glucuronidase (GLU), and tumor necrosis factor α (TNF) were measured after 16 h. Hydrogen peroxide (H2O2) production was assayed after 90 min. The overall pattern of the in vitro response to SAS (12/14) was clearly dose-dependent, except for two SAS which showed very low bioactivity. High USD energy gradually decreased the particle size of precipitated, fumed, and gel SAS whereas the low adverse effect concentrations (LOECs) remained unchanged. Nevertheless, the comparison of dose-response curves revealed slight, but uniform shifts in EC50 values (LDH, and partially GLU) for precipitated SAS (6/7), gel SAS (2/3), and fumed SAS (3/3). Release of TNF changed inconsistently with higher ultrasonic dispersion (USD) energy whereas the induction of H2O2 was diminished in all cases. Electron microscopy and energy dispersive X-ray analysis showed an uptake of SAS into endosomes, lysosomes, endoplasmic reticulum, and different types of phagosomes. The possible effects of different uptake routes are discussed. The study shows that the effect of increased USD energy on the in vitro bioactivity of SAS is surprisingly small. As the in vitro response of AM to different SAS is highly uniform, the production process per se is of minor relevance for toxicity.

13.
Elife ; 62017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091030

RESUMO

Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function).


Assuntos
Proteínas de Membrana/metabolismo , Proteostase , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Camundongos
14.
J Proteome Res ; 10(10): 4661-70, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21827211

RESUMO

The Interleukin-1/Toll-like receptor signaling pathway is a crucial signaling pathway within the innate immune system and the use of mass spectrometric techniques became valuable to investigate signal transduction pathways. To date only a few reports exist that focus on the mass spectrometric identification of novel signaling intermediates within the TLR signal transduction pathway. Here we used this approach systematically to identify new interaction partners of the TLR signaling pathway and subsequently characterized them functionally. We identified 14-3-3 theta as a new member of the TLR signaling complex. With genetic complementation assays, we demonstrate that 14-3-3 negatively regulates TLR2-dependent NF-κB activity and amplifies the TLR4-dependent activation of the transcription factor. While 14-3-3 has no effect on TLR-induced apoptosis in innate immune cells, it controls the release of the inflammatory, IRF3-dependent cytokines like RANTES and IP-10 after stimulation with LPS. Most strikingly, 14-3-3 controls the production of proinflammatory cytokines like IL-6, IL-8, and TNFα in a different manner. Our results identify 14-3-3 theta as a new and important regulatory protein in the TLR signaling suppressing the MyD88-dependent pathway.


Assuntos
Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica , Receptor 2 Toll-Like/metabolismo , Animais , Apoptose , Quimiocina CXCL10/metabolismo , Células HEK293 , Humanos , Inflamação , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Espectrometria de Massas/métodos , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA