Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 78(8): 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174552

RESUMO

Vector-boson scattering processes are of great importance for the current run-II and future runs of the Large Hadron Collider. The presence of triple and quartic gauge couplings in the process gives access to the gauge sector of the Standard Model (SM) and possible new-physics contributions there. To test any new-physics hypothesis, sound knowledge of the SM contributions is necessary, with a precision which at least matches the experimental uncertainties of existing and forthcoming measurements. In this article we present a detailed study of the vector-boson scattering process with two positively-charged leptons and missing transverse momentum in the final state. In particular, we first carry out a systematic comparison of the various approximations that are usually performed for this kind of process against the complete calculation, at LO and NLO QCD accuracy. Such a study is performed both in the usual fiducial region used by experimental collaborations and in a more inclusive phase space, where the differences among the various approximations lead to more sizeable effects. Afterwards, we turn to predictions matched to parton showers, at LO and NLO: we show that on the one hand, the inclusion of NLO QCD corrections leads to more stable predictions, but on the other hand the details of the matching and of the parton-shower programs cause differences which are considerably larger than those observed at fixed order, even in the experimental fiducial region. We conclude with recommendations for experimental studies of vector-boson scattering processes.

2.
Phys Rev Lett ; 108(3): 032005, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400732

RESUMO

We present next-to-leading order corrections in the leading color approximation for jet rates in electron-positron annihilation up to seven jets. The results for the two-, three-, and four-jet rates agree with known results. The NLO jet rates have been known previously only up to five jets. The results for the six- and seven-jet rate are new. The results are obtained by a new and efficient method based on subtraction and numerical integration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA