Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004762

RESUMO

Non-O1 and non-O139 Vibrio cholerae (NOVC) can cause gastrointestinal infections in humans. Contaminated food, especially seafood, is an important source of human infections. In this study, the virulence potential of 63 NOVC strains isolated from retail seafood were characterized at the genotypic and phenotypic levels. Although no strain encoded the cholera toxin (CTX) and the toxin-coregulated pilus (TCP), several virulence factors, including the HlyA hemolysin, the cholix toxin ChxA, the heat-stable enterotoxin Stn, and genes coding for the type 3 and type 6 secretion systems, were detected. All strains showed hemolytic activity against human and sheep erythrocytes: 90% (n = 57) formed a strong biofilm, 52% (n = 33) were highly motile at 37 °C, and only 8% (n = 5) and 14% (n = 9) could resist ≥60% and ≥40% human serum, respectively. Biofilm formation and toxin regulation genes were also detected. cgMLST analysis demonstrated that NOVC strains from seafood cluster with clinical NOVC strains. Antimicrobial susceptibility testing (AST) results in the identification of five strains that developed non-wildtype phenotypes (medium and resistant) against the substances of the classes of beta-lactams (including penicillin, carbapenem, and cephalosporin), polymyxins, and sulphonamides. The phenotypic resistance pattern could be partially attributed to the acquired resistance determinants identified via in silico analysis. Our results showed differences in the virulence potential of the analyzed NOVC isolated from retail seafood products, which may be considered for further pathogenicity evaluation and the risk assessment of NOVC isolates in future seafood monitoring.

2.
Microbiol Resour Announc ; 11(5): e0113021, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35442062

RESUMO

Aeromonads can be associated with diseases in animals and humans. Knowledge regarding Aeromonas rivuli, a species recently discovered in creek water in Germany, is still fragmentary. Here, we announce the complete genome sequence of Aeromonas rivuli strain 20-VB00005, which was recovered from ready-to-eat food.

3.
Microbiol Resour Announc ; 10(5)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541884

RESUMO

Vibrio navarrensis is a rare human pathogen. Strains of Vibrio navarrensis biotype pommerensis were isolated from seawater of the Baltic Sea. Recently, a strain of this biotype was recovered from a human patient. The isolate contains two circular chromosomes and a large plasmid with a size of 180 kb.

4.
Microorganisms ; 8(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717968

RESUMO

Vibrio cholerae non-O1, non-O139 bacteria are natural inhabitants of aquatic ecosystems and have been sporadically associated with human infections. They mostly lack the two major virulence factors of toxigenic V. cholerae serogroups O1 and O139 strains, which are the causative agent of cholera. Non-O1, non-O139 strains are found in water bodies, sediments, and in association with other aquatic organisms. Occurrence of these bacteria in fecal specimens of waterfowl were reported, and migratory birds likely contribute to the long-distance transfer of strains. We investigated four V. cholerae non-O1, non-O139 isolates for phenotypic traits and by whole genome sequencing (WGS). The isolates were recovered from organs of domestic ducks with serious disease symptoms. WGS data revealed only a distant genetic relationship between all isolates. The isolates harbored a number of virulence factors found in most V. cholerae strains. Specific virulence factors of non-O1, non-O139 strains, such as the type III secretion system (TTSS) or cholix toxin, were observed. An interesting observation is that all isolates possess multifunctional autoprocessing repeats-in-toxin toxins (MARTX) closely related to the MARTX of toxigenic El Tor O1 strains. Different primary sequences of the abundant OmpU proteins could indicate a significant role of this virulence factor. Phenotypic characteristics such as hemolysis and antimicrobial resistance (AMR) were studied. Three isolates showed susceptibility to a number of tested antimicrobials, and one strain possessed AMR genes located in an integron. Knowledge of the environmental occurrence of V. cholerae non-O1, non-O139 in Germany is limited. The source of the infection of the ducks is currently unknown. In the context of the 'One Health' concept, it is desirable to study the ecology of V. cholerae non-O1, non-O139, as it cannot be excluded that the isolates possess zoonotic potential and could cause infections in humans.

5.
Front Microbiol ; 10: 733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031724

RESUMO

Vibrio cholerae is a natural inhabitant of aquatic ecosystems globally. Strains of the serogroups O1 and O139 cause the epidemic diarrheal disease cholera. In Northern European waters, V. cholerae bacteria belonging to other serogroups (designated non-O1, non-O139) are present, of which some strains have been associated with gastrointestinal infections or extraintestinal infections, like wound infections or otitis. For this study, environmental strains from the German coastal waters of the North Sea and the Baltic Sea were selected (100 strains) and compared to clinical strains (10 isolates) that were from patients who contracted the infections in the same geographical region. The strains were characterized by MLST and examined by PCR for the presence of virulence genes encoding the cholera toxin, the toxin-coregulated pilus (TCP), and other virulence-associated accessory factors. The latter group comprised hemolysins, RTX toxins, cholix toxin, pandemic islands, and type III secretion system (TTSS). Phenotypic assays for hemolytic activity against human and sheep erythrocytes were also performed. The results of the MLST analysis revealed a considerable heterogeneity of sequence types (in total 74 STs). The presence of virulence genes was also variable and 30 profiles were obtained by PCR. One profile was found in 38 environmental strains and six clinical strains. Whole genome sequencing (WGS) was performed on 15 environmental and 7 clinical strains that were ST locus variants in one, two, or three alleles. Comparison of WGS results revealed that a set of virulence genes found in some clinical strains is also present in most environmental strains irrespective of the ST. In few strains, more virulence factors are acquired through horizontal gene transfer (i.e., TTSS, genomic islands). A distinction between clinical and environmental strains based on virulence gene profiles is not possible for our strains. Probably, many virulence traits of V. cholerae evolved in response to biotic and abiotic pressure and serve adaptation purposes in the natural aquatic environment, but provide a prerequisite for infection of susceptible human hosts. These findings indicate the need for surveillance of Vibrio spp. in Germany, as due to global warming abundance of Vibrio will rise and infections are predicted to increase.

6.
Front Microbiol ; 8: 1717, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932221

RESUMO

Strains of Vibrio navarrensis are present in aquatic environments like seawater, rivers, and sewage. Recently, strains of this species were identified in human clinical specimens. In this study, V. navarrensis strains isolated from livestock in Germany were characterized that were found in aborted fetuses and/or placentas after miscarriages. The veterinary strains were analyzed using phenotypical and genotypical methods and compared to isolates from marine environments of the Baltic Sea and North Sea. The investigated phenotypical traits were similar in all German strains. Whole genome sequencing (WGS) was used to evaluate a phylogenetic relationship by performing a single nucleotide polymorphism (SNP) analysis. For the SNP analysis, WGS data of two American human pathogenic strains and two Spanish environmental isolates from sewage were included. A phylogenetic analysis of concatenated sequences of five protein-coding housekeeping genes (gyrB, pyrH, recA, atpA, and rpoB), was additionally performed. Both phylogenetic analyses reveal a greater distance of the environmental seawater strains to the other strains. The phylogenetic tree constructed from concatenated sequences of housekeeping genes places veterinary, human pathogenic and Spanish sewage strains into one cluster. Presence and absence of virulence-associated genes were investigated based on WGS data and confirmed by PCR. However, this analysis showed no clear pattern for the potentially pathogenic strains. The detection of V. navarrensis in human clinical specimens strongly suggests that this species should be regarded as a potential human pathogen. The identification of V. navarrensis strains in domestic animals implicates a zoonotic potential of this species. This could indicate a potential threat for humans, as according to the "One Health" concept, human, animal, and environmental health are linked. Future studies are necessary to search for reservoirs of these bacteria in the environment and/or in living organisms.

7.
Emerg Infect Dis ; 23(10): 1735-1737, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28930017

RESUMO

During antimicrobial drug resistance testing for Vibrio spp. from coastal waters of Germany, we identified 4 nontoxigenic, carbapenem-resistant V. cholerae isolates. We used whole-genome sequencing to identify the carbapenemase gene blaVCC-1. In addition, a molecular survey showed that more blaVCC-1-harboring isolates are present in coastal waters of Germany.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Água do Mar/microbiologia , Vibrio cholerae/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Expressão Gênica , Alemanha , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/enzimologia , Vibrio cholerae/isolamento & purificação , Microbiologia da Água , beta-Lactamases/metabolismo
8.
Front Microbiol ; 6: 1179, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579088

RESUMO

An increase in the occurrence of potentially pathogenic Vibrio species is expected for waters in Northern Europe as a consequence of global warming. In this context, a higher incidence of Vibrio infections is predicted for the future and forecasts suggest that people visiting and living at the Baltic Sea are at particular risk. This study aimed to investigate antimicrobial resistance patterns among Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 isolates that could pose a public health risk. Antimicrobial susceptibility of 141 V. vulnificus and 184 V. cholerae non-O1/non-O139 strains isolated from German coastal waters (Baltic Sea and North Sea) as well as from patients and retail seafood was assessed by broth microdilution and disk diffusion. Both species were susceptible to most of the agents tested (12 subclasses) and no multidrug-resistance was observed. Among V. vulnificus isolates, non-susceptibility was exclusively found toward aminoglycosides. In case of V. cholerae, a noticeable proportion of strains was non-susceptible to aminopenicillins and aminoglycosides. In addition, resistance toward carbapenems, quinolones, and folate pathway inhibitors was sporadically observed. Biochemical testing indicated the production of carbapenemases with unusual substrate specificity in four environmental V. cholerae strains. Most antimicrobial agents recommended for treatment of V. vulnificus and V. cholerae non-O1/non-O139 infections were found to be effective in vitro. However, the occurrence of putative carbapenemase producing V. cholerae in German coastal waters is of concern and highlights the need for systematic monitoring of antimicrobial susceptibility in potentially pathogenic Vibrio spp. in Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA