RESUMO
Dorset sheep (Ovis aries) are common models in translational cardiovascular research due to physiologic and anatomic similarities to humans. While employing ovine subjects to study single-ventricle physiology, we repeatedly observed position-based changes in central venous pressure (CVP) which could not be explained by hydrostatic (gravitational) effects. Inferior vena cava (IVC) narrowing or compression has been demonstrated in numerous species, and we hypothesised that this phenomenon might explain our observations in O. aries. This study aimed to characterise position-dependent morphology of the IVC in O. aries using catheter-based hemodynamic and dimensional measurements, three-dimensional MRI reconstruction and histological analysis. Baseline measurements revealed a significant reduction in IVC dimensions at the level of the diaphragm (dVC) compared to the abdominal vena cava (aVC) and thoracic vena cava (tVC). We also observed a transdiaphragmatic pressure gradient along the IVC, with higher pressures in the aVC compared to the tVC. We found that variation of position and fluid status altered IVC haemodynamics. Histological data showed variable muscularity along the length of the IVC, with greater smooth muscle content in the aVC than the tVC. These findings will improve understanding of baseline ovine physiology, help refine experimental protocols and facilitate the translation of findings to the clinic.
Assuntos
Diafragma , Veia Cava Inferior , Animais , Veia Cava Inferior/anatomia & histologia , Veia Cava Inferior/diagnóstico por imagem , Diafragma/anatomia & histologia , Ovinos/anatomia & histologia , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética/veterinária , Pressão Venosa Central/fisiologia , FemininoRESUMO
PROBLEM: A shortage of curriculum-aligned formative multiple-choice questions (FMCQs) remains despite their known learning benefits in preclinical medical education due to limitations on teaching faculty time and other reasons. In response, students often use extramural resources such as commercial or collaborative question banks; however, these options are often expensive and cannot be aligned with the content of each school's unique curriculum. In addition, students need feedback on their learning in a manner that parallels the format of summative assessments. In this pilot, the authors aimed to enhance student learning by creating an intramural formative practice resource that was developed as the curriculum unfolded under the direction of the faculty leading the concurrently running curricular units. APPROACH: The authors developed a workflow known as Professor-Reviewed Exam Practice (PREP) in 2023. PREP partnered preclinical medical students and faculty to create vignette-style, single best response FMCQs with feedback for every lecture and self-guided learning module in multiple preclinical blocks of The Ohio State University College of Medicine undergraduate medical curriculum. OUTCOMES: PREP established a sustainable, student-led, faculty-guided workflow that created high-quality, curriculum-aligned FMCQs for student use in the preclinical medical curriculum over a 14-month period. Usage rates were high across multiple preclinical blocks, reflecting high student demand for FMCQs of this nature and their value as a study aid. Survey data showed faculty agreed that their time commitment and role in the PREP workflow was appropriate. NEXT STEPS: Future work will evaluate the benefits of PREP to students by exploring the potential impact of PREP FMCQs on summative assessment performance and if writing FMCQs confers benefits to PREP team members. Faculty survey indicated that performance data from PREP FMCQs could be used to tailor upcoming teaching and learning methods, which is an area for future inquiry.
RESUMO
Whole blood analysis can evaluate numerous parameters, including pH, pCO2, pO2, HCO3 - , base excess, glucose, electrolytes, lactate, blood urea nitrogen, creatinine, bilirubin, and hemoglobin. This valuable tool enables clinicians to make more informed decisions about patient care. However, the current body of literature describing perioperative whole blood analysis in Dorset sheep (Ovis aries) is small, so clinicians lack adequate information to guide their decision-making when evaluating test results. We evaluated arterial and venous whole blood pH, bicarbonate, pCO2, lactate, creatinine, and blood urea nitrogen before and for the first 24 hours after surgery in 2 cohorts of male and female Ovis arie s undergoing one of 2 major cardiovascular procedures, a Single-Stage Fontan or an inferior vena cava to pulmonary artery extracardiac conduit implantation (IP-ECC). The cohort undergoing a Single-Stage Fontan, which is the more complex procedure, exhibited greater deviation from baseline measurements than did the cohort undergoing the IP-ECC for lactate, bicarbonate, and creatinine. The cohort undergoing the IP-ECC showed no significant deviation from baseline for any parameters, potentially indicating a better safety margin than expected when compared with the Single-Stage Fontan. Together, these results indicate the clinical value of arterial and venous whole blood measurements in perioperative management of sheep and can provide a reference for clinicians managing sheep after significant cardiovascular procedures.
Assuntos
Técnica de Fontan , Animais , Feminino , Masculino , Ovinos , Creatinina/sangue , Concentração de Íons de Hidrogênio , Nitrogênio da Ureia Sanguínea , Bicarbonatos/sangue , Análise Química do Sangue/veterinária , Ácido Láctico/sangue , Dióxido de Carbono/sangue , Carneiro Doméstico/sangueRESUMO
Advancements in congenital heart surgery have heightened the importance of durable biomaterials for adult survivors. Dystrophic calcification poses a significant risk to the long-term viability of prosthetic biomaterials in these procedures. Herein, we describe the natural history of calcification in the most frequently used vascular conduits, expanded polytetrafluoroethylene grafts. Through a retrospective clinical study and an ovine model, we compare the degree of calcification between tissue-engineered vascular grafts and polytetrafluoroethylene grafts. Results indicate superior durability in tissue-engineered vascular grafts, displaying reduced late-term calcification in both clinical studies (p < 0.001) and animal models (p < 0.0001). Further assessments of graft compliance reveal that tissue-engineered vascular grafts maintain greater compliance (p < 0.0001) and distensibility (p < 0.001) than polytetrafluoroethylene grafts. These properties improve graft hemodynamic performance, as validated through computational fluid dynamics simulations. We demonstrate the promise of tissue engineered vascular grafts, remaining compliant and distensible while resisting long-term calcification, to enhance the long-term success of congenital heart surgeries.
Assuntos
Prótese Vascular , Calcinose , Ovinos , Animais , Estudos Retrospectivos , Calcinose/cirurgia , Materiais Biocompatíveis , PolitetrafluoretilenoRESUMO
Intracortical neural probes are both a powerful tool in basic neuroscience studies of brain function and a critical component of brain computer interfaces (BCIs) designed to restore function to paralyzed patients. Intracortical neural probes can be used both to detect neural activity at single unit resolution and to stimulate small populations of neurons with high resolution. Unfortunately, intracortical neural probes tend to fail at chronic timepoints in large part due to the neuroinflammatory response that follows implantation and persistent dwelling in the cortex. Many promising approaches are under development to circumvent the inflammatory response, including the development of less inflammatory materials/device designs and the delivery of antioxidant or anti-inflammatory therapies. Here, we report on our recent efforts to integrate the neuroprotective effects of both a dynamically softening polymer substrate designed to minimize tissue strain and localized drug delivery at the intracortical neural probe/tissue interface through the incorporation of microfluidic channels within the probe. The fabrication process and device design were both optimized with respect to the resulting device mechanical properties, stability, and microfluidic functionality. The optimized devices were successfully able to deliver an antioxidant solution throughout a six-week in vivo rat study. Histological data indicated that a multi-outlet design was most effective at reducing markers of inflammation. The ability to reduce inflammation through a combined approach of drug delivery and soft materials as a platform technology allows future studies to explore additional therapeutics to further enhance intracortical neural probes performance and longevity for clinical applications.
RESUMO
Patch augmentation of the right ventricular outflow tract (RVOT) and pulmonary artery (PA) arterioplasty are relatively common procedures in the surgical treatment of patients with congenital heart disease. To date, several patch materials have been applied with no agreed upon clinical standard. Each patch type has unique performance characteristics, cost, and availability. There are limited data describing the various advantages and disadvantages of different patch materials. We performed a review of studies describing the clinical performance of various RVOT and PA patch materials and found a limited but growing body of literature. Short-term clinical performance has been reported for a multitude of patch types, but comparisons are limited by inconsistent study design and scarce histologic data. Standard clinical criteria for assessment of patch efficacy and criteria for intervention need to be applied across patch types. The field is progressing with improvements in outcomes due to newer patch technologies focused on reducing antigenicity and promoting neotissue formation which may have the ability to grow, remodel, and repair.
Assuntos
Cardiopatias Congênitas , Tetralogia de Fallot , Obstrução do Fluxo Ventricular Externo , Humanos , Artéria Pulmonar/cirurgia , Obstrução do Fluxo Ventricular Externo/cirurgia , Ventrículos do Coração/cirurgia , Cardiopatias Congênitas/cirurgia , Procedimentos Cirúrgicos Vasculares/métodos , Resultado do Tratamento , Tetralogia de Fallot/cirurgiaRESUMO
(1) Background: Intracortical microelectrodes (IMEs) are essential to basic brain research and clinical brain-machine interfacing applications. However, the foreign body response to IMEs results in chronic inflammation and an increase in levels of reactive oxygen and nitrogen species (ROS/RNS). The current study builds on our previous work, by testing a new delivery method of a promising antioxidant as a means of extending intracortical microelectrodes performance. While resveratrol has shown efficacy in improving tissue response, chronic delivery has proven difficult because of its low solubility in water and low bioavailability due to extensive first pass metabolism. (2) Methods: Investigation of an intraventricular delivery of resveratrol in rats was performed herein to circumvent bioavailability hurdles of resveratrol delivery to the brain. (3) Results: Intraventricular delivery of resveratrol in rats delivered resveratrol to the electrode interface. However, intraventricular delivery did not have a significant impact on electrophysiological recordings over the six-week study. Histological findings indicated that rats receiving intraventricular delivery of resveratrol had a decrease of oxidative stress, yet other biomarkers of inflammation were found to be not significantly different from control groups. However, investigation of the bioavailability of resveratrol indicated a decrease in resveratrol accumulation in the brain with time coupled with inconsistent drug elution from the cannulas. Further inspection showed that there may be tissue or cellular debris clogging the cannulas, resulting in variable elution, which may have impacted the results of the study. (4) Conclusions: These results indicate that the intraventricular delivery approach described herein needs further optimization, or may not be well suited for this application.