RESUMO
BACKGROUND: There is a need for diagnostic tests for screening, triaging and staging of epithelial ovarian cancer (EOC). Glycoproteomics of blood samples has shown promise for biomarker discovery. METHODS: We applied glycoproteomics to serum of people with EOC or benign pelvic masses and healthy controls. A total of 653 analytes were quantified and assessed in multivariable models, which were tested in an independent cohort. Additionally, we analyzed glycosylation patterns in serum markers and in tissues. RESULTS: We identified a biomarker panel that distinguished benign lesions from EOC with sensitivity and specificity of 83.5% and 90.1% in the training set, and of 86.7 and 86.7% in the test set, respectively. ROC analysis demonstrated strong performance across a range of cutoffs. Fucosylated multi-antennary glycopeptide markers were higher in late-stage than in early-stage EOC. A comparable pattern was found in late-stage EOC tissues. CONCLUSIONS: Blood glycopeptide biomarkers have the potential to distinguish benign from malignant pelvic masses, and early- from late-stage EOC. Glycosylation of circulating and tumor tissue proteins may be related. This study supports the hypothesis that blood glycoproteomic profiling can be used for EOC diagnosis and staging and it warrants further clinical evaluation.
Assuntos
Biomarcadores Tumorais , Carcinoma Epitelial do Ovário , Estadiamento de Neoplasias , Neoplasias Ovarianas , Proteômica , Humanos , Feminino , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/sangue , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/patologia , Biomarcadores Tumorais/sangue , Proteômica/métodos , Pessoa de Meia-Idade , Idoso , Glicosilação , Adulto , Glicopeptídeos/sangue , Neoplasias Epiteliais e Glandulares/sangue , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/patologia , Glicoproteínas/sangue , Estudos de Casos e Controles , Sensibilidade e EspecificidadeRESUMO
Glycosylation is a key modulator of the functional state of proteins. Recent developments in large-scale analysis of intact glycopeptides have enabled the identification of numerous glycan structures that are relevant in pathophysiological processes. However, one motif found in N-glycans, poly-N-acetyllactosamine (polyLacNAc), still poses a substantial challenge to mass spectrometry-based glycoproteomic analysis due to its relatively low abundance and large size. In this work, we developed approaches for the systematic mapping of polyLacNAc-elongated N-glycans in melanoma cells. We first evaluated five anion exchange-based matrices for enriching intact glycopeptides and selected two materials that provided better overall enrichment efficiency. We then tested the robustness of the methodology by quantifying polyLacNAc-containing glycopeptides as well as changes in protein fucosylation and sialylation. Finally, we applied the optimal enrichment methods to discover glycopeptides containing polyLacNAc motifs in melanoma cells and found that integrins and tetraspanins are substantially modified with these structures. This study demonstrates the feasibility of glycoproteomic approaches for identification of glycoproteins with polyLacNAc motifs.
Assuntos
Integrinas , Melanoma , Humanos , Glicopeptídeos/análise , Espectrometria de Massas/métodos , Tetraspaninas , Polissacarídeos/químicaRESUMO
Monoclonal antibodies targeting the immune checkpoint PD-1 have provided significant clinical benefit across a number of solid tumors, with differences in efficacy and toxicity profiles possibly related to their intrinsic molecular properties. Here, we report that camrelizumab and cemiplimab engage PD-1 through interactions with its fucosylated glycan. Using a combination of protein and cell glycoengineering, we demonstrate that the two antibodies bind preferentially to PD-1 with core fucose at the asparagine N58 residue. We then provide evidence that the concentration of fucosylated PD-1 in the blood of non-small-cell lung cancer patients varies across different stages of disease. This study illustrates how glycoprofiling of surface receptors and related circulating forms can inform the development of differentiated antibodies that discriminate glycosylation variants and achieve enhanced selectivity, and paves the way toward the implementation of personalized therapeutic approaches.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glicosilação , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
The clinical success of immune-checkpoint inhibitors (ICI) in both resected and metastatic melanoma has confirmed the validity of therapeutic strategies that boost the immune system to counteract cancer. However, half of patients with metastatic disease treated with even the most aggressive regimen do not derive durable clinical benefit. Thus, there is a critical need for predictive biomarkers that can identify individuals who are unlikely to benefit with high accuracy so that these patients may be spared the toxicity of treatment without the likely benefit of response. Ideally, such an assay would have a fast turnaround time and minimal invasiveness. Here, we utilize a novel platform that combines mass spectrometry with an artificial intelligence-based data processing engine to interrogate the blood glycoproteome in melanoma patients before receiving ICI therapy. We identify 143 biomarkers that demonstrate a difference in expression between the patients who died within six months of starting ICI treatment and those who remained progression-free for three years. We then develop a glycoproteomic classifier that predicts benefit of immunotherapy (HR=2.7; p=0.026) and achieves a significant separation of patients in an independent cohort (HR=5.6; p=0.027). To understand how circulating glycoproteins may affect efficacy of treatment, we analyze the differences in glycosylation structure and discover a fucosylation signature in patients with shorter overall survival (OS). We then develop a fucosylation-based model that effectively stratifies patients (HR=3.5; p=0.0066). Together, our data demonstrate the utility of plasma glycoproteomics for biomarker discovery and prediction of ICI benefit in patients with metastatic melanoma and suggest that protein fucosylation may be a determinant of anti-tumor immunity.
Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inteligência Artificial , Melanoma/tratamento farmacológico , BiomarcadoresRESUMO
Cell surface glycosylation has a variety of functions, and its dysregulation in cancer contributes to impaired signaling, metastasis and the evasion of the immune responses. Recently, a number of glycosyltransferases that lead to altered glycosylation have been linked to reduced anti-tumor immune responses: B3GNT3, which is implicated in PD-L1 glycosylation in triple negative breast cancer, FUT8, through fucosylation of B7H3, and B3GNT2, which confers cancer resistance to T cell cytotoxicity. Given the increased appreciation of the relevance of protein glycosylation, there is a critical need for the development of methods that allow for an unbiased interrogation of cell surface glycosylation status. Here we provide an overview of the broad changes in glycosylation at the surface of cancer cell and describe selected examples of receptors with aberrant glycosylation leading to functional changes, with emphasis on immune checkpoint inhibitors, growth-promoting and growth-arresting receptors. Finally, we posit that the field of glycoproteomics has matured to an extent where large-scale profiling of intact glycopeptides from the cell surface is feasible and is poised for discovery of new actionable targets against cancer.
Assuntos
Glicopeptídeos , Neoplasias de Mama Triplo Negativas , Humanos , Glicosilação , Membrana Celular , Proteínas de TransporteRESUMO
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths despite being the most preventable and treatable forms of cancer when caught early through screening. There is an unmet need for novel screening approaches with improved accuracy, less invasiveness, and reduced costs. In recent years, evidence has accumulated around particular biological events that happen during the adenoma-to-carcinoma transition, especially focusing on precancerous immune responses in the colonic crypt. Protein glycosylation plays a central role in driving those responses, and recently, numerous reports have been published on how aberrant protein glycosylation both in colonic tissue and on circulating glycoproteins reflects these precancerous developments. The complex field of glycosylation, which exceeds complexity of proteins by several orders of magnitude, can now be studied primarily because of the availability of new high-throughput technologies such as mass spectrometry and artificial intelligence-powered data processing. This has now opened new avenues for studying novel biomarkers for CRC screening. This review summarizes the early events taking place from the normal colon mucosa toward adenoma and adenocarcinoma formation and associated critical protein glycosylation phenomena, both on the tissue level and in the circulation. These insights will help establish an understanding in the interpretation of novel CRC detection modalities that involve high-throughput glycomics.
Assuntos
Adenoma , Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Glicosilação , Inteligência Artificial , Neoplasias Colorretais/patologia , Adenoma/diagnóstico , Adenoma/patologia , Lesões Pré-Cancerosas/patologiaRESUMO
Identification of antibodies targeting diverse functional epitopes on an antigen is highly crucial for discovering effective therapeutic candidates. Employing a traditional stepwise antibody "screening funnel" as well as prioritizing affinity-based selections over epitope-based selections, result in lead antibody panels lacking epitope diversity. In the present study, we employed an array-based surface plasmon resonance (SPR) platform to perform high-throughput epitope binning analysis on a large number of monoclonal antibodies (mAbs) generated in the early drug discovery process. The mAb panel contained clones from different antibody generation techniques and diverse transgenic mouse strains. The epitope binning results were analyzed in unique ways using various visualizations in the form of dendrograms and network plots, which assisted in determining diversity and redundancy in the mAb sample set. The binning data were further integrated with affinity information to evaluate the performance of seven different transgenic mouse strains. The combination of epitope binning results with binding kinetics and sequence analysis provided an effective and efficient way of selecting high affinity antibodies representing a diverse set of sequence families and epitopes.
Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Animais , Epitopos , Camundongos , Ressonância de Plasmônio de SuperfícieRESUMO
Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor-ligand interface and receptor-receptor interface; the unique C-terminal receptor-receptor enables higher order structures on the membrane. Human GITR-GITRL has potential to form a hexameric network of membrane complexes, while murine GITR-GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor-receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments.
Assuntos
Proteína Relacionada a TNFR Induzida por Glucocorticoide/química , Fatores de Necrose Tumoral/metabolismo , Animais , Fenômenos Biofísicos , Linhagem Celular , Membrana Celular/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Reprodutibilidade dos Testes , Fatores de Necrose Tumoral/químicaRESUMO
Circulating platelets have important functions in thrombosis and in modulating immune and inflammatory responses. However, the role of platelets in innate immunity to bacterial infection is largely unexplored. While human platelets rapidly kill Staphylococcus aureus, we found the neonatal pathogen group B Streptococcus (GBS) to be remarkably resistant to platelet killing. GBS possesses a capsule polysaccharide (CPS) with terminal α2,3-linked sialic acid (Sia) residues that mimic a common epitope present on the human cell surface glycocalyx. A GBS mutant deficient in CPS Sia was more efficiently killed by human platelets, thrombin-activated platelet releasate, and synthetic platelet-associated antimicrobial peptides. GBS Sia is known to bind inhibitory Sia-recognizing Ig superfamily lectins (Siglecs) to block neutrophil and macrophage activation. We show that human platelets also express high levels of inhibitory Siglec-9 on their surface, and that GBS can engage this receptor in a Sia-dependent manner to suppress platelet activation. In a mouse i.v. infection model, antibody-mediated platelet depletion increased susceptibility to platelet-sensitive S. aureus but did not alter susceptibility to platelet-resistant GBS. Elimination of murine inhibitory Siglec-E partially reversed platelet suppression in response to GBS infection. We conclude that GBS Sia has dual roles in counteracting platelet antimicrobial immunity: conferring intrinsic resistance to platelet-derived antimicrobial components and inhibiting platelet activation through engagement of inhibitory Siglecs. We report a bacterial virulence factor for evasion of platelet-mediated innate immunity.
Assuntos
Cápsulas Bacterianas/metabolismo , Plaquetas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ativação Plaquetária , Infecções Estreptocócicas/metabolismo , Streptococcus agalactiae , Fatores de Virulência/metabolismo , Adulto , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Atividade Bactericida do Sangue , Plaquetas/patologia , Feminino , Glicocálix/metabolismo , Glicocálix/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidadeRESUMO
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea exclusively in humans and uses multiple strategies to infect, including acquisition of host sialic acids that cap and mask lipooligosaccharide termini, while restricting complement activation. We hypothesized that gonococci selectively target human anti-inflammatory sialic acid-recognizing Siglec receptors on innate immune cells to blunt host responses and that pro-inflammatory Siglecs and SIGLEC pseudogene polymorphisms represent host evolutionary adaptations to counteract this interaction. N. gonorrhoeae can indeed engage multiple human but not chimpanzee CD33rSiglecs expressed on innate immune cells and in the genitourinary tract--including Siglec-11 (inhibitory) and Siglec-16 (activating), which we detected for the first time on human cervical epithelium. Surprisingly, in addition to LOS sialic acid, we found that gonococcal porin (PorB) mediated binding to multiple Siglecs. PorB also bound preferentially to human Siglecs and not chimpanzee orthologs, modulating host immune reactions in a human-specific manner. Lastly, we studied the distribution of null SIGLEC polymorphisms in a Namibian cohort with a high prevalence of gonorrhea and found that uninfected women preferentially harbor functional SIGLEC16 alleles encoding an activating immune receptor. These results contribute to the understanding of the human specificity of N. gonorrhoeae and how it evolved to evade the human immune defense.
RESUMO
BACKGROUND: Siglecs-11 and -16 are members of the sialic acid recognizing Ig-like lectin family, and expressed in same cells. Siglec-11 functions as an inhibitory receptor, whereas Siglec-16 exhibits activating properties. In humans, SIGLEC11 and SIGLEC16 gene sequences are extremely similar in the region encoding the extracellular domain due to gene conversions. Human SIGLEC11 was converted by the nonfunctional SIGLEC16P allele, and the converted SIGLEC11 allele became fixed in humans, possibly because it provides novel neuroprotective functions in brain microglia. However, the detailed evolutionary history of SIGLEC11 and SIGLEC16 in other primates remains unclear. RESULTS: We analyzed SIGLEC11 and SIGLEC16 gene sequences of multiple primate species, and examined glycan binding profiles of these Siglecs. The phylogenetic tree demonstrated that gene conversions between SIGLEC11 and SIGLEC16 occurred in the region including the exon encoding the sialic acid binding domain in every primate examined. Functional assays showed that glycan binding preference is similar between Siglec-11 and Siglec-16 in all analyzed hominid species. Taken together with the fact that Siglec-11 and Siglec-16 are expressed in the same cells, Siglec-11 and Siglec-16 are regarded as paired receptors that have maintained similar ligand binding preferences via gene conversions. Relaxed functional constraints were detected on the SIGLEC11 and SIGLEC16 exons that underwent gene conversions, possibly contributing to the evolutionary acceptance of repeated gene conversions. The frequency of nonfunctional SIGLEC16P alleles is much higher than that of SIGLEC16 alleles in every human population. CONCLUSIONS: Our findings indicate that Siglec-11 and Siglec-16 have been maintained as paired receptors by repeated gene conversions under relaxed functional constraints in the primate lineage. The high prevalence of the nonfunctional SIGLEC16P allele and the fixation of the converted SIGLEC11 imply that the loss of Siglec-16 and the gain of Siglec-11 in microglia might have been favored during the evolution of human lineage.
Assuntos
Evolução Molecular , Conversão Gênica , Primatas/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Animais , Humanos , Filogenia , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de TempoRESUMO
Humans exposed to Mycobacterium tuberculosis (Mtb) have variable susceptibility to tuberculosis (TB) and its outcomes. Siglec-5 and Siglec-14 are members of the sialic-acid binding lectin family that regulate immune responses to pathogens through inhibitory (Siglec-5) and activating (Siglec-14) domains. The SIGLEC14 coding sequence is deleted in a high proportion of individuals, placing a SIGLEC5-like gene under the expression of the SIGLEC14 promoter (the SIGLEC14 null allele) and causing expression of a Siglec-5 like protein in monocytes and macrophages. We hypothesized that the SIGLEC14 null allele was associated with Mtb replication in monocytes, T-cell responses to the BCG vaccine, and clinical susceptibility to TB. The SIGLEC14 null allele was associated with protection from TB meningitis in Vietnamese adults but not with pediatric TB in South Africa. The null allele was associated with increased IL-2 and IL-17 production following ex-vivo BCG stimulation of blood from 10 week-old South African infants vaccinated with BCG at birth. Mtb replication was increased in THP-1 cells overexpressing either Siglec-5 or Siglec-14 relative to controls. To our knowledge, this is the first study to demonstrate an association between SIGLEC expression and clinical TB, Mtb replication, or BCG-specific T-cell cytokines.
Assuntos
Vacina BCG/administração & dosagem , Lectinas/genética , Mycobacterium tuberculosis/imunologia , Receptores de Superfície Celular/genética , Tuberculose Meníngea/genética , Tuberculose Meníngea/prevenção & controle , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/prevenção & controle , Vacinação , Imunidade Adaptativa , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Vacina BCG/imunologia , Estudos de Casos e Controles , Pré-Escolar , Citocinas/imunologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Lactente , Recém-Nascido , Lectinas/imunologia , Masculino , Monócitos/imunologia , Monócitos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fenótipo , Estudos Prospectivos , Receptores de Superfície Celular/imunologia , África do Sul , Linfócitos T/imunologia , Linfócitos T/microbiologia , Células THP-1 , Fatores de Tempo , Resultado do Tratamento , Tuberculose Meníngea/imunologia , Tuberculose Meníngea/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , VietnãRESUMO
Humans and chimpanzees are more sensitive to endotoxin than are mice or monkeys, but any underlying differences in inflammatory physiology have not been fully described or understood. We studied innate immune responses in Cmah-/- mice, emulating human loss of the gene encoding production of Neu5Gc, a major cell surface sialic acid. CMP-N-acetylneuraminic acid hydroxylase (CMAH) loss occurred â¼2-3 million years ago, after the common ancestor of humans and chimpanzees, perhaps contributing to speciation of the genus HomoCmah-/- mice manifested a decreased survival in endotoxemia following bacterial LPS injection. Macrophages from Cmah-/- mice secreted more inflammatory cytokines with LPS stimulation and showed more phagocytic activity. Macrophages and whole blood from Cmah-/- mice also killed bacteria more effectively. Metabolic reintroduction of Neu5Gc into Cmah-/- macrophages suppressed these differences. Cmah-/- mice also showed enhanced bacterial clearance during sublethal lung infection. Although monocytes and monocyte-derived macrophages from humans and chimpanzees exhibited marginal differences in LPS responses, human monocyte-derived macrophages killed Escherichia coli and ingested E. coli BioParticles better. Metabolic reintroduction of Neu5Gc into human macrophages suppressed these differences. Although multiple mechanisms are likely involved, one cause is altered expression of C/EBPß, a transcription factor affecting macrophage function. Loss of Neu5Gc in Homo likely had complex effects on immunity, providing greater capabilities to clear sublethal bacterial challenges, possibly at the cost of endotoxic shock risk. This trade-off may have provided a selective advantage when Homo transitioned to butchery using stone tools. The findings may also explain why the Cmah-/- state alters severity in mouse models of human disease.
Assuntos
Endotoxemia/imunologia , Escherichia coli/fisiologia , Inflamação/imunologia , Macrófagos/imunologia , Oxigenases de Função Mista/metabolismo , Animais , Bacteriólise/genética , Evolução Biológica , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Feminino , Humanos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Pan troglodytes , Fagocitose/genéticaRESUMO
Paired immune receptors display near-identical extracellular ligand-binding regions but have intracellular sequences with opposing signaling functions. While inhibitory receptors dampen cellular activation by recognizing self-associated molecules, the functions of activating counterparts are less clear. Here, we studied the inhibitory receptor Siglec-11 that shows uniquely human expression in brain microglia and engages endogenous polysialic acid to suppress inflammation. We demonstrated that the human-specific pathogen Escherichia coli K1 uses its polysialic acid capsule as a molecular mimic to engage Siglec-11 and escape killing. In contrast, engagement of the activating counterpart Siglec-16 increases elimination of bacteria. Since mice do not have paired Siglec receptors, we generated a model by replacing the inhibitory domain of mouse Siglec-E with the activating module of Siglec-16. Siglec-E16 enhanced proinflammatory cytokine expression and bacterial killing in macrophages and boosted protection against intravenous bacterial challenge. These data elucidate uniquely human interactions of a pathogen with Siglecs and support the long-standing hypothesis that activating counterparts of paired immune receptors evolved as a response to pathogen molecular mimicry of host ligands for inhibitory receptors.
Assuntos
Inflamação/patologia , Lectinas/metabolismo , Proteínas de Membrana/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo , Animais , Citocinas/metabolismo , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Humanos , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Transgênicos , Viabilidade MicrobianaRESUMO
CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.
Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Regulação da Expressão Gênica/fisiologia , Multimerização Proteica/fisiologia , Substituição de Aminoácidos , Animais , Anticorpos/química , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Diferenciação de Linfócitos B/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Glicosilação , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Mutagênese , Mutação de Sentido Incorreto , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Ratos , Ratos Endogâmicos Lew , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismoRESUMO
The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer's dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer's disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin.
Assuntos
Doença de Alzheimer/genética , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Aptidão Genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/fisiologia , Alelos , Processamento Alternativo , Animais , Apolipoproteínas E/genética , Evolução Biológica , Transtornos Cerebrovasculares/genética , Fertilidade/genética , Loci Gênicos , Humanos , Pan troglodytes , Seleção Genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genéticaRESUMO
Glycans linked to asparagine (N) residues of eukaryotic glycoproteins are typically heterogeneous. This diversity complicates the study of biological functions associated with particular glycan structures and impairs the application of glycoproteins in medicine. Several approaches have been developed to produce homogeneous glycoproteins. We describe a method to produce glycoproteins carrying N-linked N-acetylglucosamine (GlcNAc) through glyco-engineered E. coli cells and enzymatic treatment. N-linked GlcNAc can then be extended by existing methods to produce homogeneous glycoproteins.
Assuntos
Asparagina/genética , Escherichia coli/genética , Glicoproteínas/genética , Acetilglucosamina/genética , Glicosilação , Polissacarídeos/genéticaRESUMO
Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan.