Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677555

RESUMO

N1,N2-diphenylacenaphthylene-1,2-diimines (BIANs) have been used to reduce the undesired high viscosity of alkyl magnesium solutions, which are known to form polymeric structures. In order to understand the mechanisms, analyses of the BIAN alkyl magnesium solutions have been carried out under inert conditions with SEC-MS, NMR, and FTIR and were compared to the structures obtained from HPLC-MS, FTIR, and NMR after aqueous workup. While viscosity reduction was shown for all BIAN derivatives used, only the bis (diisopropyl)-substituted BIAN could be clearly assigned to a single reaction product, which also could be reused without loss of efficiency or decomposition. All other derivatives have been shown to behave differently, even under inert conditions, and decompose upon contact with acidic solvents. While the chemical reactions observed after the workup of the used BIANs are dominated by (multiple) alkylation, mainly on the C = N double bond, the observation of viscosity reduction cannot be assigned to this reaction alone, but to the interaction of the nitrogen atoms of BIANs with the Mg of the alkyl magnesium polymers, as could be shown by FTIR and NMR measurements under inert conditions.

2.
Nat Electron ; 6(8): 630-641, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38465017

RESUMO

Wearable sweat sensors can potentially be used to continuously and non-invasively monitor physicochemical biomarkers that contain information related to disease diagnostics and fitness tracking. However, the development of such autonomous sensors faces a number of challenges including achieving steady sweat extraction for continuous and prolonged monitoring, and addressing the high power demands of multifunctional and complex analysis. Here we report an autonomous wearable biosensor that is powered by a perovskite solar cell and can provide continuous and non-invasive metabolic monitoring. The device uses a flexible quasi-two-dimensional perovskite solar cell module that provides ample power under outdoor and indoor illumination conditions (power conversion efficiency exceeding 31% under indoor light illumination). We show that the wearable device can continuously collect multimodal physicochemical data - glucose, pH, sodium ions, sweat rate, and skin temperature - across indoor and outdoor physical activities for over 12 hours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA