Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Inorg Chem ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912596

RESUMO

Silicon dumbbells constitute identifiable anionic molecular species in Zintl phases and so-called covalent metals holding units with homopolar bonding inside a metallic framework. Based on electron-precise Ca5Si3 and metallic CaSi3, the chemical bonding in Si2 units is investigated by computational quantum chemical methods considering the dual nature of the wave function. This concerted wave-vector and real space study substantiates that the Si2 dumbbells in Ca5Si3 can be referred to as molecular building units Si26- with additional metallic and ionic contributions in the solid. In the covalent metal CaSi3, however, the bonding within the dumbbells falls short of fulfilling the octet rule. As a result, antibonding states of the Si2 building units are depopulated and attend metallic interactions, simultaneously giving rise to stronger covalent Si-Si bonds.

2.
Soft Matter ; 20(22): 4488-4503, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38804018

RESUMO

The nucleus of eukaryotic cells typically makes up around 30% of the cell volume and has significantly different mechanics, which can make it effectively up to ten times stiffer than the surrounding cytoplasm. Therefore it is an important element for cell mechanics, but a quantitative understanding of its mechanical role during whole cell dynamics is largely missing. Here we demonstrate that elastic phase fields can be used to describe dynamical cell processes in adhesive or confining environments in which the nucleus acts as a stiff inclusion in an elastic cytoplasm. We first introduce and verify our computational method and then study several prevalent cell-mechanical measurement methods. For cells on adhesive patterns, we find that nuclear stress is shielded by the adhesive pattern. For cell compression between two parallel plates, we obtain force-compression curves that allow us to extract an effective modulus for the cell-nucleus composite. For micropipette aspiration, the effect of the nucleus on the effective modulus is found to be much weaker, highlighting the complicated interplay between extracellular geometry and cell mechanics that is captured by our approach. We also show that our phase field approach can be used to investigate the effects of Kelvin-Voigt-type viscoelasticity and cortical tension.


Assuntos
Núcleo Celular , Elasticidade , Fenômenos Biomecânicos , Modelos Biológicos , Adesão Celular , Estresse Mecânico , Humanos
3.
PLoS Comput Biol ; 20(4): e1011412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574170

RESUMO

Cell shape plays a fundamental role in many biological processes, including adhesion, migration, division and development, but it is not clear which shape model best predicts three-dimensional cell shape in structured environments. Here, we compare different modelling approaches with experimental data. The shapes of single mesenchymal cells cultured in custom-made 3D scaffolds were compared by a Fourier method with surfaces that minimize area under the given adhesion and volume constraints. For the minimized surface model, we found marked differences to the experimentally observed cell shapes, which necessitated the use of more advanced shape models. We used different variants of the cellular Potts model, which effectively includes both surface and bulk contributions. The simulations revealed that the Hamiltonian with linear area energy outperformed the elastic area constraint in accurately modelling the 3D shapes of cells in structured environments. Explicit modelling the nucleus did not improve the accuracy of the simulated cell shapes. Overall, our work identifies effective methods for accurately modelling cellular shapes in complex environments.


Assuntos
Forma Celular
4.
J Biophotonics ; 17(3): e202300358, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018656

RESUMO

The cochlea forms a key element of the human auditory system in the temporal bone. Damage to the cochlea continues to produce significant impairment for sensory reception of environmental stimuli. To improve this impairment, the optical cochlear implant forms a new research approach. A prerequisite for this method is to understand how light propagation, as well as scattering, reflection, and absorption, takes place within the cochlea. We offer a method to study the light distribution in the human cochlea through phantom materials which have the objective to mimic the optical behavior of bone and Monte-Carlo simulations. The calculation of an angular distribution after scattering requires a phase function. Often approximate functions like Henyey-Greenstein, two-term Henyey-Greenstein or Legendre polynomial decompositions are used as phase function. An alternative is to exactly calculate a Mie distribution for each scattering event. This method provides a better fit to the data measured in this work.


Assuntos
Algoritmos , Cóclea , Humanos , Espalhamento de Radiação , Método de Monte Carlo , Luz
5.
Biophys J ; 122(21): 4241-4253, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803828

RESUMO

Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into ß sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%-80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.


Assuntos
Fibroínas , Seda , Seda/química , Seda/metabolismo , Proteínas de Artrópodes/química , Fibroínas/química , Peptídeos , Alanina
6.
ACS Nano ; 17(19): 18942-18951, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37669531

RESUMO

Fusion of biological membranes is fundamental in various physiological events. The fusion process involves several intermediate stages with energy barriers that are tightly dependent on the mechanical and physical properties of the system, one of which is membrane tension. As previously established, the late stages of fusion, including hemifusion diaphragm and pore expansions, are favored by membrane tension. However, a current understanding of how the energy barrier of earlier fusion stages is affected by membrane tension is lacking. Here, we apply a newly developed experimental approach combining micropipette-aspirated giant unilamellar vesicles and optically trapped membrane-coated beads, revealing that membrane tension inhibits lipid mixing. We show that lipid mixing is 6 times slower under a tension of 0.12 mN/m compared with tension-free membranes. Furthermore, using continuum elastic theory, we calculate the dependence of the hemifusion stalk formation energy on membrane tension and intermembrane distance and find the increase in the corresponding energy barrier to be 1.6 kBT in our setting, which can explain the increase in lipid mixing time delay. Finally, we show that tension can be a significant factor in the stalk energy if the pre-fusion intermembrane distance is on the order of several nanometers, while for membranes that are tightly docked, tension has a negligible effect.

7.
Elife ; 122023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548995

RESUMO

Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.


Assuntos
Células Epiteliais , Fenômenos Mecânicos , Células Epiteliais/fisiologia , Epitélio , Adesão Celular/fisiologia , Elasticidade , Estresse Mecânico
8.
Biophys J ; 122(16): 3340-3353, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37475214

RESUMO

Blood platelets are central elements of the blood clotting response after wounding. Upon vessel damage, they bind to the surrounding matrix and contract the forming thrombus, thus helping to restore normal blood circulation. The hemostatic function of platelets is directly connected to their mechanics and cytoskeletal organization. The reorganization of the platelet cytoskeleton during spreading occurs within minutes and leads to the formation of contractile actomyosin bundles, but it is not known if there is a direct correlation between the emerging actin structures and the force field that is exerted to the environment. In this study, we combine fluorescence imaging of the actin structures with simultaneous traction force measurements in a time-resolved manner. In addition, we image the final states with superresolution microscopy. We find that both the force fields and the cell shapes have clear geometrical patterns defined by stress fibers. Force generation is localized in a few hotspots, which appear early during spreading, and, in the mature state, anchor stress fibers in focal adhesions. Moreover, we show that, for a gel stiffness in the physiological range, force generation is a very robust mechanism and we observe no systematic dependence on the amount of added thrombin in solution or fibrinogen coverage on the substrate, suggesting that force generation after platelet activation is a threshold phenomenon that ensures reliable thrombus contraction in diverse environments.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Actomiosina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo
9.
Cell Host Microbe ; 31(4): 616-633.e20, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37003257

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) inhibits the entry of numerous viruses through undefined molecular mechanisms. IFITM3 localizes in the endosomal-lysosomal system and specifically affects virus fusion with target cell membranes. We found that IFITM3 induces local lipid sorting, resulting in an increased concentration of lipids disfavoring viral fusion at the hemifusion site. This increases the energy barrier for fusion pore formation and the hemifusion dwell time, promoting viral degradation in lysosomes. In situ cryo-electron tomography captured IFITM3-mediated arrest of influenza A virus membrane fusion. Observation of hemifusion diaphragms between viral particles and late endosomal membranes confirmed hemifusion stabilization as a molecular mechanism of IFITM3. The presence of the influenza fusion protein hemagglutinin in post-fusion conformation close to hemifusion sites further indicated that IFITM3 does not interfere with the viral fusion machinery. Collectively, these findings show that IFITM3 induces lipid sorting to stabilize hemifusion and prevent virus entry into target cells.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Influenza Humana/metabolismo , Internalização do Vírus , Vírus da Influenza A/metabolismo , Membrana Celular/metabolismo , Lipídeos , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
EMBO J ; 42(11): e113578, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082863

RESUMO

Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/metabolismo , Fusão de Membrana , Proteínas do Core Viral/metabolismo , Endossomos/metabolismo , Proteínas da Matriz Viral
11.
Biophys J ; 122(10): 1868-1882, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37077047

RESUMO

The fusion of lipid membranes progresses through a series of hemifusion intermediates with two significant energy barriers related to the formation of stalk and fusion pore, respectively. These energy barriers determine the speed and success rate of many critical biological processes, including the fusion of highly curved membranes, for example synaptic vesicles and enveloped viruses. Here we use continuum elastic theory of lipid monolayers to determine the relationship between membrane shape and energy barriers to fusion. We find that the stalk formation energy decreases with curvature by up to 31 kBT in a 20-nm-radius vesicle compared with planar membranes and by up to 8 kBT in the fusion of highly curved, long, tubular membranes. In contrast, the fusion pore formation energy barrier shows a more complicated behavior. Immediately after stalk expansion to the hemifusion diaphragm, the fusion pore formation energy barrier is low (15-25 kBT) due to lipid stretching in the distal monolayers and increased tension in highly curved vesicles. Therefore, the opening of the fusion pore is faster. However, these stresses relax over time due to lipid flip-flop from the proximal monolayer, resulting in a larger hemifusion diaphragm and a higher fusion pore formation energy barrier, up to 35 kBT. Therefore, if the fusion pore fails to open before significant lipid flip-flop takes place, the reaction proceeds to an extended hemifusion diaphragm state, which is a dead-end configuration in the fusion process and can be used to prevent viral infections. In contrast, in the fusion of long tubular compartments, the surface tension does not accumulate due to the formation of the diaphragm, and the energy barrier for pore expansion increases with curvature by up to 11 kBT. This suggests that inhibition of polymorphic virus infection could particularly target this feature of the second barrier.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Fusão de Membrana/fisiologia , Fluidez de Membrana , Membranas , Termodinâmica
12.
J Chem Phys ; 158(8): 085102, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859084

RESUMO

The Spindle Assembly Abnormal Protein 6 (SAS-6) forms dimers, which then self-assemble into rings that are critical for the nine-fold symmetry of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings is strongly facilitated on a surface, shifting the reaction equilibrium by four orders of magnitude compared to the bulk. Moreover, a fraction of non-canonical symmetries (i.e., different from nine) was observed. In order to understand which aspects of the system are relevant to ensure efficient self-assembly and selection of the nine-fold symmetry, we have performed Brownian dynamics computer simulation with patchy particles and then compared our results with the experimental ones. Adsorption onto the surface was simulated by a grand canonical Monte Carlo procedure and random sequential adsorption kinetics. Furthermore, self-assembly was described by Langevin equations with hydrodynamic mobility matrices. We find that as long as the interaction energies are weak, the assembly kinetics can be described well by coagulation-fragmentation equations in the reaction-limited approximation. By contrast, larger interaction energies lead to kinetic trapping and diffusion-limited assembly. We find that the selection of nine-fold symmetry requires a small value for the angular interaction range. These predictions are confirmed by the experimentally observed reaction constant and angle fluctuations. Overall, our simulations suggest that the SAS-6 system works at the crossover between a relatively weak binding energy that avoids kinetic trapping and a small angular range that favors the nine-fold symmetry.

13.
Eur J Cell Biol ; 102(3): 151304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36907743
14.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36734980

RESUMO

Eukaryotic cells use clathrin-mediated endocytosis to take up a large range of extracellular cargo. During endocytosis, a clathrin coat forms on the plasma membrane, but it remains controversial when and how it is remodeled into a spherical vesicle. Here, we use 3D superresolution microscopy to determine the precise geometry of the clathrin coat at large numbers of endocytic sites. Through pseudo-temporal sorting, we determine the average trajectory of clathrin remodeling during endocytosis. We find that clathrin coats assemble first on flat membranes to 50% of the coat area before they become rapidly and continuously bent, and this mechanism is confirmed in three cell lines. We introduce the cooperative curvature model, which is based on positive feedback for curvature generation. It accurately describes the measured shapes and dynamics of the clathrin coat and could represent a general mechanism for clathrin coat remodeling on the plasma membrane.


Assuntos
Vesículas Revestidas por Clatrina , Clatrina , Endocitose , Linhagem Celular , Membrana Celular/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Células Eucarióticas
15.
Chemistry ; 29(16): e202203955, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722619

RESUMO

The compound Ge32 Co9-x (x=0.54(6), a=10.9861(3) Å, space group Im 3 ‾ $\bar 3$ m) prepared under high pressure and at high temperature is metastable under ambient conditions. It crystallizes in a new structure type, Pearson symbol cI82-1.08. The crystal structure represents a slightly distorted cubic primitive arrangement of germanium atoms with part of the Ge cubes filled by cobalt. Analysis of the chemical bonding by real-space methods revealed three-core cluster units Ge16 Co3 and seemingly empty regions comprising either covalent inter-polyhedral Ge-Ge bonds or lone-pairs located at the germanium atoms. The electrical conductivity is metal-like.

16.
Methods Mol Biol ; 2600: 323-339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587108

RESUMO

Computer simulations have become a widely used method for the field of mechanobiology. An important question is whether one can predict the shape and forces of cells as a function of the extracellular environment. Different types of models have been described before to simulate cell and tissue shapes in structured environments. In this chapter, we give a brief overview of commonly used models and then describe the Cellular Potts Model, a lattice-based modelling framework, in more detail. We provide a hands-on guide on how to build a model that simulates the shape of a single cell on a micropattern in three dimensions in different open source software packages using the Cellular Potts framework. A simulation is set up with an initial configuration of generalized cells that change shape and position due to an energy function that incorporates cellular volume and surface area constraints as well as interaction energies between the generalized cells.


Assuntos
Matriz Extracelular , Software , Forma Celular/fisiologia , Simulação por Computador , Matriz Extracelular/metabolismo , Modelos Biológicos
17.
J Am Chem Soc ; 144(30): 13456-13460, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35875975

RESUMO

The high-pressure phase Na8BxSi46-x (3 < x < 5) is the first representative of a borosilicide crystallizing in the rarely occurring clathrate VIII type structure. Crystals with composition Na8B4Si42 (space group I43̅m; a = 9.7187(2) Å; Pearson symbol cI54) were obtained at 5-8 GPa and 1200 K. The clathrate I modification exists for the same composition at lower pressure with a larger cell volume (Pm3̅n; a = 9. 977(2) Å; cP54). Profound structural adaptions allow for a higher density of the clathrate VIII type than clathrate I, opening up the perspective of obtaining clathrate VIII type compounds as high-pressure forms of clathrate I.

18.
Methods Mol Biol ; 2470: 445-455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881365

RESUMO

Immuno-electron microscopy can detect and localize antigens in cells or tissues at a resolution of several nanometers. In the case of P. falciparum-infected erythrocytes, immuno-EM studies are frequently hampered by the electron-dense nature of the hemoglobin and access of antibodies to antigenic sites, particularly if the targeted protein is presented on the host cell surface or lies in proximity to the host cell cytoskeleton. Here, we describe an improved immuno-EM protocol that overcomes these problems. The improved signal to noise ratio and the enhanced access to antigenic sites now allows one to obtain information regarding target density and distribution and, hence, additional insights into the architecture and function of parasite-induced, or -affected, structures.


Assuntos
Malária Falciparum , Plasmodium falciparum , Apresentação de Antígeno , Antígenos de Protozoários , Eritrócitos/metabolismo , Humanos , Microscopia Imunoeletrônica , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
19.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630304

RESUMO

Porphyrinoid-based photodynamic inactivation (PDI) provides a promising approach to treating multidrug-resistant infections. However, available agents for PDI still have optimization potential with regard to effectiveness, toxicology, chemical stability, and solubility. The currently available photosensitizer TMPyP is provided with a para substitution pattern (para-TMPyP) of the pyridinium groups and has been demonstrated to be effective for PDI of multidrug-resistant bacteria. To further improve its properties, we synthetized a structural variant of TMPyP with an isomeric substitution pattern in a meta configuration (meta-TMPyP), confirmed the correct structure by crystallographic analysis and performed a characterization with NMR-, UV/Vis-, and IR spectroscopy, photostability, and singlet oxygen generation assay. Meta-TMPyP had a hypochromic shift in absorbance (4 nm) with a 55% higher extinction coefficient and slightly improved photostability (+6.9%) compared to para-TMPyP. Despite these superior molecular properties, singlet oxygen generation was increased by only 5.4%. In contrast, PDI, based on meta-TMPyP, reduced the density of extended spectrum ß-lactamase-producing and fluoroquinolone-resistant Escherichia coli by several orders of magnitude, whereby a sterilizing effect was observed after 48 min of illumination, while para-TMPyP was less effective (p < 0.01). These findings demonstrate that structural modification with meta substitution increases antibacterial properties of TMPyP in PDI.

20.
PLoS Comput Biol ; 18(4): e1009509, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35394995

RESUMO

Red blood cells can withstand the harsh mechanical conditions in the vasculature only because the bending rigidity of their plasma membrane is complemented by the shear elasticity of the underlying spectrin-actin network. During an infection by the malaria parasite Plasmodium falciparum, the parasite mines host actin from the junctional complexes and establishes a system of adhesive knobs, whose main structural component is the knob-associated histidine rich protein (KAHRP) secreted by the parasite. Here we aim at a mechanistic understanding of this dramatic transformation process. We have developed a particle-based computational model for the cytoskeleton of red blood cells and simulated it with Brownian dynamics to predict the mechanical changes resulting from actin mining and KAHRP-clustering. Our simulations include the three-dimensional conformations of the semi-flexible spectrin chains, the capping of the actin protofilaments and several established binding sites for KAHRP. For the healthy red blood cell, we find that incorporation of actin protofilaments leads to two regimes in the shear response. Actin mining decreases the shear modulus, but knob formation increases it. We show that dynamical changes in KAHRP binding affinities can explain the experimentally observed relocalization of KAHRP from ankyrin to actin complexes and demonstrate good qualitative agreement with experiments by measuring pair cross-correlations both in the computer simulations and in super-resolution imaging experiments.


Assuntos
Malária , Proteínas de Protozoários , Actinas/metabolismo , Citoesqueleto/metabolismo , Membrana Eritrocítica , Eritrócitos/metabolismo , Humanos , Peptídeos/química , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Espectrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA