Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 88(2): 461-75, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20617311

RESUMO

Over the last decade, adherent MDCK (Madin Darby canine kidney) and Vero cells have attracted considerable attention for production of cell culture-derived influenza vaccines. While numerous publications deal with the design and the optimization of corresponding upstream processes, one-to-one comparisons of these cell lines under comparable cultivation conditions have largely been neglected. Therefore, a direct comparison of influenza virus production with adherent MDCK and Vero cells in T-flasks, roller bottles, and lab-scale bioreactors was performed in this study. First, virus seeds had to be adapted to Vero cells by multiple passages. Glycan analysis of the hemagglutinin (HA) protein showed that for influenza A/PR/8/34 H1N1, three passages were sufficient to achieve a stable new N-glycan fingerprint, higher yields, and a faster increase to maximum HA titers. Compared to MDCK cells, virus production in serum-free medium with Vero cells was highly sensitive to trypsin concentration. Virus stability at 37 degrees C for different virus strains showed differences depending on medium, virus strain, and cell line. After careful adjustment of corresponding parameters, comparable productivity was obtained with both host cell lines in small-scale cultivation systems. However, using these cultivation conditions in lab-scale bioreactors (stirred tank, wave bioreactor) resulted in lower productivities for Vero cells.


Assuntos
Reatores Biológicos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vacinas contra Influenza/biossíntese , Cultura de Vírus/métodos , Animais , Técnicas de Cultura de Células , Chlorocebus aethiops , Cães , Células Vero
2.
Vaccine ; 27(32): 4325-36, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19410619

RESUMO

Mammalian cell culture processes are commonly used for production of recombinant glycoproteins, antibodies and viral vaccines. Since several years there is an increasing interest in cell culture-based influenza vaccine production to overcome limitations of egg-based production systems, to improve vaccine supply and to increase flexibility in vaccine manufacturing. With the switch of the production system several key questions concerning the possible impact of host cell lines on antigen quality, passage-dependent selection of certain viral phenotypes or changes in hemagglutinin (HA) conformation have to be addressed to guarantee safety and efficiency of vaccines. In contrast to the production of recombinant glycoproteins, comparatively little is known regarding glycosylation of HA, derived from mammalian cell cultures. Within this study, a capillary DNA-sequencer (based on CGE-LIF technology), was utilized for N-glycan analysis of three different influenza virus strains, which were replicated in six different cell lines. Detailed results concerning the influence of the host cell line on complexity and composition of the HA N-glycosylation pattern, are presented. Strong host cell but also virus type and subtype dependence of HA N-glycosylation was found. Clear differences were already observed, by N-glycan fingerprint comparison. Further structural investigations of the N-glycan pools revealed that host cell dependence of HA N-glycosylation was mainly related to minor variations of the (monomeric) constitution of single N-glycans. To some extent, shifts in the N-glycan pool composition regarding the proportion of different N-glycan types were observed. In contrast to this, a principal switch of the N-glycan type attached to HA was observed when comparing different virus types (A and B) and subtypes (H1N1 and H3N2).


Assuntos
Glicoproteínas/química , Hemaglutininas Virais/química , Vacinas contra Influenza/química , Polissacarídeos/análise , Animais , Linhagem Celular , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza B/química , Vírus da Influenza B/crescimento & desenvolvimento
3.
Electrophoresis ; 29(20): 4203-14, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18925582

RESUMO

Glycoproteins, such as monoclonal antibodies as well as recombinant and viral proteins produced in mammalian cell culture play an important role in manufacturing of many biopharmaceuticals. To ensure consisting quality of the corresponding products, glycosylation profiles have to be tightly controlled, as glycosylation affects important properties of the corresponding proteins, including bioactivity and antigenicity. This study describes the establishment of a method for analyzing N-glycosylation patterns of mammalian cell culture-derived influenza A virus glycoproteins used in vaccine manufacturing. It comprises virus purification directly from cell culture supernatant, protein isolation, deglycosylation, and clean-up steps as well as "fingerprint" analysis of N-glycan pools by CGE-LIF, using a capillary DNA-sequencer. Reproducibility studies of CGE-LIF, virus purification, and sample preparation have been performed. For demonstrating its applicability, the method was exemplarily used for monitoring batch-to-batch reproducibility in vaccine production, with respect to the glycosylation pattern of the membrane protein hemagglutinin of influenza A/PR/8/34 (H1N1) virus. This method allows characterization of variations in protein glycosylation patterns, directly by N-glycan "fingerprint" alignment.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/química , Vacinas contra Influenza/análise , Polissacarídeos/análise , Animais , Técnicas de Cultura de Células , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar/métodos , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/imunologia , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA