Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 9(45): 9395-9405, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34734960

RESUMO

Nanodiamonds (ND) have been suggested to have several potential uses in biomedicine, since they are seemingly biocompatible. However, data about the biological effects of ND in physiological conditions are scarce. In this study, we observed that prostate cancer cells (LNCaP) and breast cancer cells (MDA-MB-231 and MCF-7) cultured with ND show morphological changes and altered gene and protein expression. In 2D we could detect only slight effects of ND on cell growth and apoptosis induction. Therefore, we applied different functionalized ND in a novel 3D cell culture model that reflects better tissue conditions compared to conventional 2D cell cultures. In 3D proliferation was reduced by all nanoparticles and benzoquinone functionalized ND induced cell death. As the used decellularized scaffold maintains the tissue architecture, we could also functionally investigate if nanoparticles induce cell migration into deeper layers and if they display markers of Mesenchymal Epithelial Transition (MET). We detected in more mesenchymal and invasive growing MDA-MB-231 cells less vimentin and increased levels of pan-cytokeratin expression after ND treatment, which indicates a MET induction. Our observations suggest that the presence of ND stimulates MET, with varying degrees of transition. The observation that ND do not support the opposite, EMT, is beneficial, since EMT is known to play a major role in tumor metastasis. However, a special focus should be placed on the characterization of biological effects to be able to guarantee the safety of ND in clinical use.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanodiamantes , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Humanos
2.
J Biomed Mater Res A ; 106(6): 1697-1707, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29451353

RESUMO

Scaffolds functionalized with nanodiamond particles (nDP) hold great promise with regard to bone tissue formation in animal models. Degradation of the scaffolds over time may leave nDP within the tissues, raising concerns about possible long-term unwanted effects. Human SaOS-2 osteoblast-like cells and U937 monoblastoid cells were exposed to five different concentrations (0.002-2 mg/L) of nDP (size range: 2.36-4.42 nm) for 24 h. Cell viability was assessed by impedance-based methods. The differential expression of stress and toxicity-related genes was evaluated by polymerase chain reaction (PCR) super-array, while the expression of selected inflammatory and cell death markers was determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Furthermore, the expression of osteogenic genes by SaOS-2 cells, alkaline phosphatase activity and the extracellular calcium nodule deposition in response to nDP were determined in vitro. Cells responded differently to higher nDP concentrations (≥0.02 mg/L), that is, no loss of viability for SaOS-2 cells and significantly reduced viability for U937 cells. Gene expression showed significant upregulation of several cell death and inflammatory markers, among other toxicity reporter genes, indicating inflammatory and cytotoxic responses in U937 cells. Nanodiamond particles improved the osteogenicity of osteoblast-like cells with no evident cytotoxicity. However, concentration-dependent cytotoxic and inflammatory responses were seen in the U937 cells, negatively affecting osteogenicity in co-cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1697-1707, 2018.


Assuntos
Materiais Biocompatíveis/química , Nanodiamantes/química , Osteoblastos/citologia , Osteogênese , Alicerces Teciduais/química , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular , Humanos , Nanodiamantes/toxicidade , Engenharia Tecidual , Alicerces Teciduais/efeitos adversos
3.
J Mater Chem B ; 5(32): 6629-6636, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264425

RESUMO

One of the major challenges in bone tissue engineering is adequate vascularization within bone substituents for nutrients and oxygen supply. In this study, the production and results of a new, highly functional bone construct consisting of a commercial three-dimensional ß-tricalcium phosphate scaffold (ß-TCP, ChronOS®) and hydrophilic, functionalized nanodiamond (ND) particles are reported. A 30-fold increase in the active surface area of the ChronOS + ND scaffold was achieved after modification with ND. In addition, immobilization of angiopoietin-1 (Ang-1) via physisorption within the ß-TCP + ND scaffold retained the bioactivity of the growth factor. Homogeneous distribution of the ND and Ang-1 within the core of the three-dimensional scaffold was confirmed using ND covalently labelled with Oregon Green. The biological responses of the ß-TCP + ND scaffold with and without Ang-1 were studied in a sheep calvaria critical size defect model showing that the ß-TCP + ND scaffold improved the blood vessel ingrowth and the ß-TCP + ND + ND + Ang-1 scaffold further promoted vascularization and new bone formation. The results demonstrate that the modification of scaffolds with tailored diamond nanoparticles is a valuable method for improving the characteristics of bone implants and enables new approaches in bone tissue engineering.

4.
Chemistry ; 19(34): 11396-408, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23843352

RESUMO

A series of silicon-containing derivatives of the polycyclic musk odorant galaxolide (4 a) was synthesized, that is, disila-galaxolide ((4RS,7SR)-4 b/(4RS,7RS)-4 b), its methylene derivative rac-9, and its nor analogue rac-10. The tricyclic title compounds with their 7,8-dihydro-6,8-disila-6 H-cyclopenta[g]isochromane skeleton were prepared in multistep syntheses by using a cobalt-catalyzed [2+2+2] cycloaddition of the mono- yne H2C=CHCH2 OCH2 C≡CB(pin) (B(pin)=4,4,5,5-tetramethyl-1,3,2-di- oxaborolan-2-yl) with the diynes H2C=C[Si(CH3 )2 C≡CH]2 or H2C- [Si(CH3)2 C≡CH]2 as the key step. Employing [Cr(CO)3 (MeCN)3 ] as an auxiliary, the disila-galaxolide diastereomers (4RS,7SR)-4 b and (4RS,7RS)-4 b could be chromatographically separated through their tricarbonylchromium(0) complexes, followed by oxidative decomplexation. The identity of the title compounds and their precursors was established by elemental analyses and multinuclear NMR spectroscopic studies and in some cases additionally by crystal structure analyses. Compounds (4RS,7SR)-4 b, (4RS,7RS)-4 b, rac-9, and rac-10 were characterized for their olfactory properties, including GC-olfactory studies of the racemic compounds on a chiral stationary phase. As for the parent galaxolide stereoisomers 4 a, only one enantiomer of the silicon compounds (4RS,7SR)-4 b, (4RS,7RS)-4 b, rac-9, and rac-10, smelt upon enantioselective GC-olfactometry, which according to the elution sequence is assumed to be also (4S)-configured as in the case of the galaxolide stereoisomers. The disila-analogues (4S,7R)-4 b and (4S,7S)-4 b were, however, about one order of magnitude less intense in terms of their odor threshold than their parent carbon compounds (4S,7R)-4 a and (4S,7S)-4 a. The introduction of a 7-methylene group in disila-galaxolide (4 b→rac-9) improved the odor threshold by a factor of two. With the novel silicon-containing galaxolide derivatives, the presumed hydrophobic bulk binding pocket of the corresponding musk receptor(s) could be characterized in more detail, which could be useful for the design of novel musk odorants with an improved environmental profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA