Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reg Environ Change ; 23(1): 29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713958

RESUMO

Climate change severely affects mountain forests and their ecosystem services, e.g., by altering disturbance regimes. Increasing timber harvest (INC) via a close-to-nature forestry may offer a mitigation strategy to reduce disturbance predisposition. However, little is known about the efficiency of this strategy at the scale of forest enterprises and potential trade-offs with biodiversity and ecosystem services (BES). We applied a decision support system which accounts for disturbance predisposition and BES indicators to evaluate the effect of different harvest intensities and climate change scenarios on windthrow and bark beetle predisposition in a mountain forest enterprise in Switzerland. Simulations were carried out from 2010 to 2100 under historic climate and climate change scenarios (RCP4.5, RCP8.5). In terms of BES, biodiversity (structural and tree species diversity, deadwood amount) as well as timber production, recreation (visual attractiveness), carbon sequestration, and protection against gravitational hazards (rockfall, avalanche and landslides) were assessed. The INC strategy reduced disturbance predisposition to windthrow and bark beetles. However, the mitigation potential for bark beetle disturbance was relatively small (- 2.4%) compared to the opposite effect of climate change (+ 14% for RCP8.5). Besides, the INC strategy increased the share of broadleaved species and resulted in a synergy with recreation and timber production, and a trade-off with carbon sequestration and protection function. Our approach emphasized the disproportionally higher disturbance predisposition under the RCP8.5 climate change scenario, which may threaten currently unaffected mountain forests. Decision support systems accounting for climate change, disturbance predisposition, and BES can help coping with such complex planning situations. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-02015-w.

2.
PLoS One ; 15(12): e0244289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382710

RESUMO

In the field of forestry, one of the most economically important ecosystem service is the provision of timber. The need to calculate the economic effects of forest management in the short, medium, and long term is increasing. Forest operations or timber harvesting, which comprises felling, processing, and transport of trees or timber, are responsible for a large part of the costs and environmental impacts associated to forest management or enterprises. From a decision maker's perspective, it is essential to estimate working productivity and production costs under given operating conditions before any operation is conducted. This work addresses the lack of a valid collection of models that allows estimating time, productivities, and costs of labor and machinery for the most important forest operations in forest stands under Central European conditions. To create such models, we used data from forest enterprises, manual time studies, and the literature. This work presents a decision support tool that estimates the wood harvesting productivities of 12 different kinds of forest operations under Central European conditions. It includes forest operations using chainsaws, harvesters, skidders, forwarders, chippers, cable and tower yarders, and helicopters. In addition, the tool covers three models for wood volume estimation. The tool is written in Java and available open-source under the Apache License. This work shows how the tool can be used by describing its graphical user interface (GUI) and its application programming interface (API) that facilitates bulk processing of scientific data. Carefully selected default values allow estimations without knowing all input variables in detail. Each model is accompanied by an in-depth documentation where the forest operation, input variables, formulas, and statistical background are given. We conclude that HeProMo is a very useful tool for applications in forest practice, research, and teaching.


Assuntos
Conservação dos Recursos Naturais/métodos , Previsões/métodos , Agricultura Florestal/métodos , Técnicas de Apoio para a Decisão , Ecossistema , Eficiência , Agricultura Florestal/economia , Florestas , Modelos Teóricos , Árvores , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA