Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37699006

RESUMO

MOTIVATION: While evolutionary approaches to medicine show promise, measuring evolution itself is difficult due to experimental constraints and the dynamic nature of body systems. In cancer evolution, continuous observation of clonal architecture is impossible, and longitudinal samples from multiple timepoints are rare. Increasingly available DNA sequencing datasets at single-cell resolution enable the reconstruction of past evolution using mutational history, allowing for a better understanding of dynamics prior to detectable disease. There is an unmet need for an accurate, fast, and easy-to-use method to quantify clone growth dynamics from these datasets. RESULTS: We derived methods based on coalescent theory for estimating the net growth rate of clones using either reconstructed phylogenies or the number of shared mutations. We applied and validated our analytical methods for estimating the net growth rate of clones, eliminating the need for complex simulations used in previous methods. When applied to hematopoietic data, we show that our estimates may have broad applications to improve mechanistic understanding and prognostic ability. Compared to clones with a single or unknown driver mutation, clones with multiple drivers have significantly increased growth rates (median 0.94 versus 0.25 per year; P = 1.6×10-6). Further, stratifying patients with a myeloproliferative neoplasm (MPN) by the growth rate of their fittest clone shows that higher growth rates are associated with shorter time to MPN diagnosis (median 13.9 versus 26.4 months; P = 0.0026). AVAILABILITY AND IMPLEMENTATION: We developed a publicly available R package, cloneRate, to implement our methods (Package website: https://bdj34.github.io/cloneRate/). Source code: https://github.com/bdj34/cloneRate/.


Assuntos
Neoplasias , Software , Humanos , Neoplasias/genética , Análise de Sequência de DNA , Filogenia , Células Clonais , Mutação , Evolução Clonal
2.
Theor Popul Biol ; 66(2): 129-38, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15302222

RESUMO

The fixation of advantageous mutations in a population has the effect of reducing variation in the DNA sequence near that mutation. Kaplan et al. (1989) used a three-phase simulation model to study the effect of selective sweeps on genealogies. However, most subsequent work has simplified their approach by assuming that the number of individuals with the advantageous allele follows the logistic differential equation. We show that the impact of a selective sweep can be accurately approximated by a random partition created by a stick-breaking process. Our simulation results show that ignoring the randomness when the number of individuals with the advantageous allele is small can lead to substantial errors.


Assuntos
Genética Populacional , Modelos Genéticos , Alelos , Humanos , Mutação/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA