Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637532

RESUMO

Swarming micro/nanorobots offer great promise in performing targeted delivery inside diverse hard-to-reach environments. However, swarm navigation in dynamic environments challenges delivery capability and real-time swarm localization. Here, we report a strategy to navigate a nanoparticle microswarm in real time under ultrasound Doppler imaging guidance for active endovascular delivery. A magnetic microswarm was formed and navigated near the boundary of vessels, where the reduced drag of blood flow and strong interactions between nanoparticles enable upstream and downstream navigation in flowing blood (mean velocity up to 40.8 mm/s). The microswarm-induced three-dimensional blood flow enables Doppler imaging from multiple viewing configurations and real-time tracking in different environments (i.e., stagnant, flowing blood, and pulsatile flow). We also demonstrate the ultrasound Doppler-guided swarm formation and navigation in the porcine coronary artery ex vivo. Our strategy presents a promising connection between swarm control and real-time imaging of microrobotic swarms for localized delivery in dynamic environments.

2.
Oecologia ; 116(1-2): 50-56, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28308540

RESUMO

We investigated the effects of elevated CO2 (600 µl l-1 vs 350 µl l-1) and phosphorus supply (1 g P m-2 year-1 vs unfertilized) on intact monoliths from species-rich calcareous grassland in a greenhouse. Aboveground community dry mass remained almost unaffected by elevated CO2 in the first year (+6%, n.s.), but was significantly stimulated by CO2 enrichment in year two (+26%, P<0.01). Among functional groups, only graminoids contributed significantly to this increase. The effect of phosphorus alone on community biomass was small in both years and marginally significant only when analyzed with MANOVA (+6% in year one, +9% in year two, 0.1 ≥P > 0.05). Belowground biomass and stubble after two seasons were not different in elevated CO2 and when P was added. The small initial increase in aboveground community biomass under elevated CO2 is explained by the fact that some species, in particular Carex flacca, responded very positively right from the beginning, while others, especially the dominant Bromus erectus, responded negatively to CO2 enrichment. Shifts in community composition towards more responsive species explain the much larger CO2 response in the second year. These shifts, i.e., a decline in xerophytic elements (B. erectus) and an increase in mesophytic grasses and legumes occurred independently of treatments in all monoliths but were accelerated significantly by elevated CO2. The difference in average biomass production at elevated compared to ambient CO2 was higher when P was supplied (at the community level the CO2 response was enhanced from 20% to 33% when P was added, in graminoids from 17% to 27%, in legumes from 4% to 60%, and in C. flacca from 120% to 298% by year two). Based on observations in this and similar studies, we suggest that interactions between CO2 concentration, species presence, and nutrient availability will govern community responses to elevated CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA