Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6609, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857604

RESUMO

Calcium (Ca) can contribute to soil organic carbon (SOC) persistence by mediating physico-chemical interactions between organic compounds and minerals. Yet, Ca is also crucial for microbial adhesion, potentially affecting colonization of plant and mineral surfaces. The importance of Ca as a mediator of microbe-mineral-organic matter interactions and resulting SOC transformation has been largely overlooked. We incubated 44Ca labeled soils with 13C15N labeled leaf litter to study how Ca affects microbial transformation of litter and formation of mineral associated organic matter. Here we show that Ca additions promote hyphae-forming bacteria, which often specialize in colonizing surfaces, and increase incorporation of litter into microbial biomass and carbon use efficiency by approximately 45% each. Ca additions reduce cumulative CO2 production by 4%, while promoting associations between minerals and microbial byproducts of plant litter. These findings expand the role of Ca in SOC persistence from solely a driver of physico-chemical reactions to a mediator of coupled abiotic-biotic cycling of SOC.


Assuntos
Cálcio , Solo , Solo/química , Cálcio/metabolismo , Carbono/metabolismo , Microbiologia do Solo , Plantas/metabolismo , Minerais/química
2.
Glob Chang Biol ; 28(15): 4589-4604, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543517

RESUMO

The structure of soil aggregates plays an important role for the turnover of particulate organic matter (POM) and vice versa. Analytical approaches usually do not disentangle the continuous re-organization of soil aggregates, caught between disintegration and assemblage. This led to a lack of understanding of the mechanistic relationship between aggregation and organic matter dynamics in soils. In this study, we took advantage of a process-based mechanistic model that describes the interaction between the dynamic (re-)arrangement of soil aggregates, based on dynamic image analysis data of wet-sieved aggregates, to analyze the turnover of POM, and simultaneous soil surface interactions in a spatially and temporally explicit way. Our novel modeling approach enabled us to unravel the temporal development of aggregate sizes, organic carbon (OC) turnover of POM, and surface coverage as affected by soil texture, POM input, and POM decomposition rate comparing a low and high clay soil (18% and 33% clay content). Our results reveal the importance of the dynamic re-arrangement of soil structure on POM-related turnover of OC in soils. Firstly, aggregation was largely determined by the POM input fostering aggregates through additional gluing joints outweighing soil texture at lower decomposition rate, whereas at higher decomposition rate, soil texture had a higher influence leading to larger aggregates in the high clay soil. Secondly, the POM storage increased with clay content, showing that surface interactions may delay the turnover of OC into CO2 . Thirdly, we observed a structural priming effect in which the increased input of POM induced increased structural re-arrangement stimulating the mineralization of old POM. This work highlights that the dynamic re-arrangement of soil aggregates has important implications for OC turnover and is driven by underlying surface interactions where temporary gluing spots stabilize larger aggregates.


Assuntos
Carbono , Solo , Carbono/química , Argila , Solo/química
3.
Nat Commun ; 12(1): 4115, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226560

RESUMO

The largest terrestrial organic carbon pool, carbon in soils, is regulated by an intricate connection between plant carbon inputs, microbial activity, and the soil matrix. This is manifested by how microorganisms, the key players in transforming plant-derived carbon into soil organic carbon, are controlled by the physical arrangement of organic and inorganic soil particles. Here we conduct an incubation of isotopically labelled litter to study effects of soil structure on the fate of litter-derived organic matter. While microbial activity and fungal growth is enhanced in the coarser-textured soil, we show that occlusion of organic matter into aggregates and formation of organo-mineral associations occur concurrently on fresh litter surfaces regardless of soil structure. These two mechanisms-the two most prominent processes contributing to the persistence of organic matter-occur directly at plant-soil interfaces, where surfaces of litter constitute a nucleus in the build-up of soil carbon persistence. We extend the notion of plant litter, i.e., particulate organic matter, from solely an easily available and labile carbon substrate, to a functional component at which persistence of soil carbon is directly determined.


Assuntos
Carbono/química , Material Particulado , Microbiologia do Solo , Solo/química , Biomassa , Ácidos Graxos , Fungos , Processos Heterotróficos , Minerais/química , Plantas
5.
Glob Chang Biol ; 24(4): 1637-1650, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29223134

RESUMO

Global change contributes to the retreat of glaciers at unprecedented rates. The deglaciation facilitates biogeochemical processes on glacial deposits with initiating soil formation as an important driver of evolving ecosystems. The underlying mechanisms of soil formation and the association of soil organic matter (SOM) with mineral particles remain unclear, although further insights are critical to understand carbon sequestration in soils. We investigated the microspatial arrangement of SOM coatings at intact soil microaggregate structures during various stages of ecosystem development from 15 to >700 years after deglaciation in the proglacial environment of the Damma glacier (Switzerland). The functionally important clay-sized fraction (<2 µm) was separated into two density fractions with different amounts of organo-mineral associations: light (1.6-2.2 g/cm3 ) and heavy (>2.2 g/cm3 ). To quantify how SOM extends across the surface of mineral particles (coverage) and whether SOM coatings are distributed in fragmented or connected patterns (connectivity), we developed an image analysis protocol based on nanoscale secondary ion mass spectrometry (NanoSIMS). We classified SOM and mineral areas depending on the 16 O- , 12 C- , and 12 C14 N- distributions. With increasing time after glacial retreat, the microspatial coverage and connectivity of SOM increased rapidly. The rapid soil formation led to a succession of patchy distributed to more connected SOM coatings on soil microaggregates. The maximum coverage of 55% at >700 years suggests direct evidence for SOM sequestration being decoupled from the mineral surface, as it was not completely masked by SOM and retained its functionality as an ion exchange site. The chemical composition of SOM coatings showed a rapid change toward a higher CN:C ratio already at 75 years after glacial retreat, which was associated with microbial succession patterns reflecting high N assimilation. Our results demonstrate that rapid SOM sequestration drives the microspatial succession of SOM coatings in soils, a process that can stabilize SOM for the long term.


Assuntos
Carbono/química , Camada de Gelo , Solo/química , Ecossistema , Minerais/química , Suíça , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-29119000

RESUMO

BACKGROUND: The industrial applications of cellulases are mostly limited by the costs associated with their production. Optimized production pathways are therefore desirable. Based on their enzyme inducing capacity, celluloses are commonly used in fermentation media. However, the influence of their physiochemical characteristics on the production process is not well understood. In this study, we examined how physical, structural and chemical properties of celluloses influence cellulase and hemicellulase production in an industrially-optimized and a non-engineered filamentous fungus: Trichoderma reesei RUT-C30 and Neurospora crassa. The performance was evaluated by quantifying gene induction, protein secretion and enzymatic activities. RESULTS: Among the three investigated substrates, the powdered cellulose was found to be the most impure, and the residual hemicellulosic content was efficiently perceived by the fungi. It was furthermore found to be the least crystalline substrate and consequently was the most readily digested cellulose in vitro. In vivo however, only RUT-C30 was able to take full advantage of these factors. When comparing carbon catabolite repressed and de-repressed strains of T. reesei and N. crassa, we found that cre1/cre-1 is at least partially responsible for this observation, but that the different wiring of the molecular signaling networks is also relevant. CONCLUSIONS: Our findings indicate that crystallinity and hemicellulose content are major determinants of performance. Moreover, the genetic background between WT and modified strains greatly affects the ability to utilize the cellulosic substrate. By highlighting key factors to consider when choosing the optimal cellulosic product for enzyme production, this study has relevance for the optimization of a critical step in the biotechnological (hemi-) cellulase production process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA