Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 2887, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575573

RESUMO

Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Coronavirus/genética , Prevalência , Filogenia , Infecções por Coronavirus/epidemiologia
3.
Commun Biol ; 7(1): 169, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341501

RESUMO

Anthropogenic disturbance may increase the emergence of zoonoses. Especially generalists that cope with disturbance and live in close contact with humans and livestock may become reservoirs of zoonotic pathogens. Yet, whether anthropogenic disturbance modifies host-pathogen co-evolutionary relationships in generalists is unknown. We assessed pathogen diversity, neutral genome-wide diversity (SNPs) and adaptive MHC class II diversity in a rodent generalist inhabiting three lowland rainforest landscapes with varying anthropogenic disturbance, and determined which MHC alleles co-occurred more frequently with 13 gastrointestinal nematodes, blood trypanosomes, and four viruses. Pathogen-specific selection pressures varied between landscapes. Genome-wide diversity declined with the degree of disturbance, while MHC diversity was only reduced in the most disturbed landscape. Furthermore, pristine forest landscapes had more functional important MHC-pathogen associations when compared to disturbed forests. We show co-evolutionary links between host and pathogens impoverished in human-disturbed landscapes. This underscores that parasite-mediated selection might change even in generalist species following human disturbance which in turn may facilitate host switching and the emergence of zoonoses.


Assuntos
Nematoides , Roedores , Animais , Ratos , Roedores/genética , Imunogenética , Florestas , Zoonoses
4.
Mol Ecol ; 32(14): 3989-4002, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203872

RESUMO

Understanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species. Here, we aimed to link asymmetries in observed CoV (CoV-229E, CoV-2B and CoV-2Bbasal) susceptibility to immunogenetic differences amongst four Hipposideros bat species. From the 2072 bats assigned to their respective species using the mtDNA cytochrome b gene, members of the most numerous and ubiquitous species, Hipposideros caffer D, were most infected with CoV-229E and SARS-related CoV-2B. Using a subset of 569 bats, we determined that much of the existent allelic and functional (i.e. supertype) MHC DRB class II diversity originated from common ancestry. One MHC supertype shared amongst all species, ST12, was consistently linked to susceptibility with CoV-229E, which is closely related to the common cold agent HCoV-229E, and infected bats and those carrying ST12 had a lower body condition. The same MHC supertype was connected to resistance to CoV-2B, and bats with ST12 were less likely be co-infected with CoV-229E and CoV-2B. Our work suggests a role of immunogenetics in determining CoV susceptibility in bats. We advocate for the preservation of functional genetic and species diversity in reservoirs as a means of mitigating the risk of disease spillover.


Assuntos
Quirópteros , Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Animais , Quirópteros/genética , Genes MHC da Classe II , Filogenia , Coronavirus/genética , Coronavirus Humano 229E/genética , Antígenos de Histocompatibilidade Classe II/genética
5.
Anim Microbiome ; 5(1): 22, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024947

RESUMO

BACKGROUND: Human encroachment into nature and the accompanying environmental changes are a big concern for wildlife biodiversity and health. While changes on the macroecological scale, i.e. species community and abundance pattern, are well documented, impacts on the microecological scale, such as the host's microbial community, remain understudied. Particularly, it is unclear if impacts of anthropogenic landscape modification on wildlife gut microbiomes are species-specific. Of special interest are sympatric, generalist species, assumed to be more resilient to environmental changes and which often are well-known pathogen reservoirs and drivers of spill-over events. Here, we analyzed the gut microbiome of three such sympatric, generalist species, one rodent (Proechimys semispinosus) and two marsupials (Didelphis marsupialis and Philander opossum), captured in 28 study sites in four different landscapes in Panama characterized by different degrees of anthropogenic disturbance. RESULTS: Our results show species-specific gut microbial responses to the same landscape disturbances. The gut microbiome of P. semispinosus was less diverse and more heterogeneous in landscapes with close contact with humans, where it contained bacterial taxa associated with humans, their domesticated animals, and potential pathogens. The gut microbiome of D. marsupialis showed similar patterns, but only in the most disturbed landscape. P. opossum, in contrast, showed little gut microbial changes, however, this species' absence in the most fragmented landscapes indicates its sensitivity to long-term isolation. CONCLUSION: These results demonstrate that wildlife gut microbiomes even in generalist species with a large ecological plasticity are impacted by human encroachment into nature, but differ in resilience which can have critical implications on conservation efforts and One Health strategies.

6.
J Anim Ecol ; 91(11): 2220-2234, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36097677

RESUMO

Human habitat disturbance affects both species diversity and intraspecific genetic diversity, leading to correlations between these two components of biodiversity (termed species-genetic diversity correlation, SGDC). However, whether SGDC predictions extend to host-associated communities, such as the intestinal parasite and gut microbial diversity, remains largely unexplored. Additionally, the role of dominant generalist species is often neglected despite their importance in shaping the environment experienced by other members of the ecological community, and their role as source, reservoir and vector of zoonotic diseases. New analytical approaches (e.g. structural equation modelling, SEM) can be used to assess SGDC relationships and distinguish among direct and indirect effects of habitat characteristics and disturbance on the various components of biodiversity. With six concrete and biologically sound models in mind, we collected habitat characteristics of 22 study sites from four distinct landscapes located in central Panama. Each landscape differed in the degree of human disturbance and fragmentation measured by several quantitative variables, such as canopy cover, canopy height and understorey density. In terms of biodiversity, we estimated on the one hand, (a) small mammal species diversity, and, on the other hand, (b) genome-wide diversity, (c) intestinal parasite diversity and (d) gut microbial heterogeneity of the most dominant generalist species (Tome's spiny rat, Proechimys semispinosus). We used SEMs to assess the links between habitat characteristics and biological diversity measures. The best supported SEM suggested that habitat characteristics directly and positively affect the richness of small mammals, the genetic diversity of P. semispinosus and its gut microbial heterogeneity. Habitat characteristics did not, however, directly impact intestinal parasite diversity. We also detected indirect, positive effects of habitat characteristics on both host-associated assemblages via small mammal richness. For microbes, this is likely linked to cross species transmission, particularly in shared and/or anthropogenically altered habitats, whereas host diversity mitigates parasite infections. The SEM revealed an additional indirect but negative effect on intestinal parasite diversity via host genetic diversity. Our study showcases that habitat alterations not only affect species diversity and host genetic diversity in parallel, but also species diversity of host-associated assemblages. The impacts from human disturbance are therefore expected to ripple through entire ecosystems with far reaching effects felt even by generalist species.


Las perturbaciones antropogénicas sobre los hábitats naturales pueden afectar tanto a la diversidad de las especies como a la diversidad genética intraespecífica, dando lugar a correlaciones entre estos dos elementos de la biodiversidad (denominados correlación de la diversidad genética de las especies, SGDC por sus siglas en inglés). Sin embargo, todavía queda sin explorar si las predicciones de la SGDC afectan a las comunidades de parásitos y microorganismos intestinales asociadas al hospedador. Adicionalmente, el rol que juegan las especies generalistas, especialmente aquéllas dominantes, suele ser descuidado, a pesar de la importancia de control que ejercen sobre la estructura de la comunidad, y su rol como fuente, reservorio y vector de enfermedades zoonóticas. Para poder evaluar las relaciones de SGDC y distinguir entre los efectos directos e indirectos que tienen las características del hábitat y las perturbaciones sobre los distintos componentes de la biodiversidad, se pueden utilizar nuevos enfoques analíticos como por ejemplo los modelos de ecuaciones estructurales (SEM, por sus siglas en inglés). Considerando seis modelos específicos y biológicamente sólidos, recopilamos las características del hábitat de 22 sitios ubicados en cuatro paisajes distintos situados en el centro de Panamá. Cada paisaje difería en el grado de perturbación antropogénica y fragmentación, medido por diferentes variables cuantitativas, como la cobertura del dosel, la altura del dosel y la densidad del sotobosque. En términos de biodiversidad, por un lado estimamos (1) la diversidad de especies de pequeños mamíferos y, por otro lado (2) la diversidad del genoma completo, (3) la diversidad de parásitos intestinales, y (4) la heterogeneidad de las comunidades microbianas del intestino de la especie generalista más dominante, la rata espinosa de Tomes Proechimys semispinosus. Para evaluar los vínculos entre las características del hábitat y las medidas de diversidad biológica se utilizó el modelado SEM. El SEM mejor apoyado sugirió que las características del hábitat afectan directa y positivamente a la abundancia de pequeños mamíferos, a la diversidad genética de P. semispinosus y a la heterogeneidad microbiana intestinal. Sin embargo, se observó que las características del hábitat no tienen un efecto directo en la diversidad de parásitos intestinales. Aparte de estos efectos directos, detectamos efectos indirectos y positivos de las características del hábitat en ambos conjuntos asociados al hospedador (diversidad de parásitos y microorganismos intestinales) a través de la abundancia de pequeños mamíferos. En el caso de las comunidades microbianas, esto está probablemente relacionado con la transmisión interespecífica, especialmente en hábitats compartidos y/o antropogénicamente alterados; mientras que la diversidad de hospedadores mitiga las infecciones de parásitos. El SEM reveló un efecto indirecto adicional pero negativo sobre la diversidad de parásitos intestinales a través de la diversidad genética de los hospedadores. Nuestro estudio muestra que los patrones de SGDC se filtran a través de las varias capas de diversidad biológica, añadiendo los ensamblajes asociados al hospedador como componentes biológicos afectados por las alteraciones del hábitat.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Roedores , Mamíferos , Panamá
7.
PLoS Pathog ; 17(11): e1009675, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748618

RESUMO

Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection.


Assuntos
Infecções por Adenoviridae/imunologia , Bactérias/crescimento & desenvolvimento , Cheirogaleidae/imunologia , Microbioma Gastrointestinal , Genes MHC da Classe II , Genes MHC Classe I , Helmintíase/imunologia , Adenoviridae/fisiologia , Infecções por Adenoviridae/virologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Cheirogaleidae/genética , Cheirogaleidae/parasitologia , Cheirogaleidae/virologia , Helmintíase/parasitologia , Helmintos/fisiologia , Polimorfismo Genético
8.
Commun Biol ; 4(1): 800, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172822

RESUMO

In the Anthropocene, humans, domesticated animals, wildlife, and their environments are interconnected, especially as humans advance further into wildlife habitats. Wildlife gut microbiomes play a vital role in host health. Changes to wildlife gut microbiomes due to anthropogenic disturbances, such as habitat fragmentation, can disrupt natural gut microbiota homeostasis and make animals vulnerable to infections that may become zoonotic. However, it remains unclear whether the disruption to wildlife gut microbiomes is caused by habitat fragmentation per se or the combination of habitat fragmentation with additional anthropogenic disturbances, such as contact with humans, domesticated animals, invasive species, and their pathogens. Here, we show that habitat fragmentation per se does not impact the gut microbiome of a generalist rodent species native to Central America, Tome's spiny rat Proechimys semispinosus, but additional anthropogenic disturbances do. Indeed, compared to protected continuous and fragmented forest landscapes that are largely untouched by other human activities, the gut microbiomes of spiny rats inhabiting human-disturbed fragmented landscapes revealed a reduced alpha diversity and a shifted and more dispersed beta diversity. Their microbiomes contained more taxa associated with domesticated animals and their potential pathogens, suggesting a shift in potential metagenome functions. On the one hand, the compositional shift could indicate a degree of gut microbial adaption known as metagenomic plasticity. On the other hand, the greater variation in community structure and reduced alpha diversity may signal a decline in beneficial microbial functions and illustrate that gut adaption may not catch up with anthropogenic disturbances, even in a generalist species with large phenotypic plasticity, with potentially harmful consequences to both wildlife and human health.


Assuntos
Animais Selvagens/microbiologia , Microbioma Gastrointestinal/fisiologia , Adaptação Fisiológica , Animais , Ecossistema , Humanos , Metagenoma , Microbiota
9.
Mol Ecol ; 29(19): 3777-3794, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32506669

RESUMO

Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent-wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV-driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome-wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre-RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV-infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus-driven selection in response to a suddenly emerging infectious disease.


Assuntos
Infecções por Caliciviridae , Epidemias , Vírus da Doença Hemorrágica de Coelhos , Animais , Austrália/epidemiologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/veterinária , Genótipo , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos
10.
Immunogenetics ; 71(8-9): 575-587, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31520134

RESUMO

The major histocompatibility complex (MHC) is one of the most diverse genetic regions under pathogen-driven selection because of its central role in antigen binding and immunity. The highest MHC variability, both in terms of the number of individual alleles and gene copies, has so far been found in passerine birds; this is probably attributable to passerine adaptation to both a wide geographic range and a diverse array of habitats. If extraordinary high MHC variation and duplication rates are adaptive features under selection during the evolution of ecologically and taxonomically diverse species, then similarly diverse MHC architectures should be found in bats. Bats are an extremely species-rich mammalian group that is globally widely distributed. Many bat species roost in multitudinous groups and have high contact rates with pathogens, conspecifics, and allospecifics. We have characterized the MHC class I diversity in 116 Panamanian Seba's short-tailed bats (Carollia perspicillata), a widely distributed, generalist, neotropical species. We have detected a remarkable individual and population-level diversity of MHC class I genes, with between seven and 22 alleles and a unique genotype in each individual. This diversity is comparable with that reported in passerine birds and, in both taxonomic groups, further variability has evolved through length polymorphisms. Our findings support the hypothesis that, for species with a geographically broader range, high MHC class I variability is particularly adaptive. Investigation of the details of the underlying adaptive processes and the role of the high MHC diversity in pathogen resistance are important next steps for a better understanding of the role of bats in viral evolution and as carriers of several deadly zoonotic viruses.


Assuntos
Quirópteros/genética , Evolução Molecular , Antígenos de Histocompatibilidade Classe I/genética , Polimorfismo Genético , Seleção Genética , Sequência de Aminoácidos , Animais , Quirópteros/imunologia , Éxons , Frequência do Gene , Geografia , Antígenos de Histocompatibilidade Classe I/imunologia , Filogenia , Homologia de Sequência
11.
J Anim Ecol ; 87(5): 1418-1428, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30133819

RESUMO

European rabbits (Oryctolagus cuniculus) have been exposed to rabbit haemorrhagic disease virus (RHDV) and myxoma virus (MYXV) in their native and invasive ranges for decades. Yet, the long-term effects of these viruses on rabbit population dynamics remain poorly understood. In this context, we analysed 17 years of detailed capture-mark-recapture data (2000-2016) from Turretfield, South Australia, using a probabilistic state-space hierarchical modelling framework to estimate rabbit survival and epidemiological dynamics. While RHDV infection and disease-induced death were most prominent during annual epidemics in winter and spring, we found evidence for continuous infection of susceptible individuals with RHDV throughout the year. RHDV-susceptible rabbits had, on average, 25% lower monthly survival rates compared to immune individuals, while the average monthly force of infection in winter and spring was ~38%. These combined to result in an average infection-induced mortality rate of 69% in winter and spring. Individuals susceptible to MYXV and immune to RHDV had similar survival probabilities to those having survived infections from both viruses, whereas individuals susceptible to both RHDV and MYXV had higher survival probabilities than those susceptible to RHDV and immune to MYXV. This suggests that MYXV may reduce the future survival rates of individuals that endure initial MYXV infection. There was no evidence for long-term changes in disease-induced mortality and infection rates for either RHDV or MYXV. We conclude that continuous, year-round virus perpetuation (and perhaps heterogeneity in modes of transmission and infectious doses during and after epidemics) acts to reduce the efficiency of RHDV and MYXV as biocontrol agents of rabbits in their invasive range. However, if virulence can be maintained as relatively constant through time, RHDV and MYXV will likely continue realizing strong benefits as biocontrol agents.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Myxoma virus , Animais , Coelhos , Austrália do Sul , Virulência
12.
Mol Ecol ; 26(17): 4551-4561, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28667769

RESUMO

Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.


Assuntos
Infecções por Caliciviridae/genética , Infecções por Caliciviridae/veterinária , Resistência à Doença/genética , Coelhos/genética , Animais , Animais Selvagens/genética , Animais Selvagens/virologia , Austrália , Agentes de Controle Biológico , Vírus da Doença Hemorrágica de Coelhos , Coelhos/virologia
13.
J Hered ; 108(4): 369-378, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407082

RESUMO

Due to their role in mate choice, disease resistance and kin recognition, genes of the major histocompatibility complex (MHC) are good candidates for investigating genetic-based mate choice. MHC-based mate choice is context dependent and influenced by many factors including social structure. Social structure diversity makes the Egernia group of lizards suitable for comparative studies of MHC-based mate choice. We investigated mate choice in the gidgee skink (Egernia stokesii), a lizard that exhibits high levels of social group and spatial stability. Group membership was incorporated into tests of the good genes as heterozygosity and compatible genes hypotheses for adaptive (MHC) and neutral (microsatellite) genetic diversity (n = 47 individuals genotyped). Females were more likely to pair with a male with higher MHC diversity and with whom they had a lower degree of microsatellite relatedness. Males were more likely to pair with a female with higher microsatellite heterozygosity and with whom they shared a lower proportion of MHC alleles. Lizards were more likely to mate with an individual from within, rather than outside, their social group, which confirmed earlier findings for this species and indicated mate choice had already largely occurred prior to either social group formation or acceptance of an individual into an existing group. Thus, a combination of genes and group membership, rather than group membership alone, predicted mate choice in this species. This work will contribute to an enhanced understanding of squamate group formation and a deeper understanding of the evolution of sociality within all vertebrates.


Assuntos
Lagartos/genética , Complexo Principal de Histocompatibilidade/genética , Preferência de Acasalamento Animal , Animais , Austrália , Feminino , Variação Genética , Genótipo , Heterozigoto , Masculino , Repetições de Microssatélites
14.
J R Soc Interface ; 12(103)2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25566883

RESUMO

Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species.


Assuntos
Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/imunologia , Vírus da Doença Hemorrágica de Coelhos/imunologia , Espécies Introduzidas , Modelos Imunológicos , Estações do Ano , Animais , Austrália/epidemiologia , Feminino , Masculino , Mixomatose Infecciosa , Coelhos
15.
Evol Appl ; 7(9): 1056-67, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25553067

RESUMO

In Australia, the rabbit haemorrhagic disease virus (RHDV) has been used since 1996 to reduce numbers of introduced European rabbits (Oryctolagus cuniculus) which have a devastating impact on the native Australian environment. RHDV causes regular, short disease outbreaks, but little is known about how the virus persists and survives between epidemics. We examined the initial spread of RHDV to show that even upon its initial spread, the virus circulated continuously on a regional scale rather than persisting at a local population level and that Australian rabbit populations are highly interconnected by virus-carrying flying vectors. Sequencing data obtained from a single rabbit population showed that the viruses that caused an epidemic each year seldom bore close genetic resemblance to those present in previous years. Together, these data suggest that RHDV survives in the Australian environment through its ability to spread amongst rabbit subpopulations. This is consistent with modelling results that indicated that in a large interconnected rabbit meta-population, RHDV should maintain high virulence, cause short, strong disease outbreaks but show low persistence in any given subpopulation. This new epidemiological framework is important for understanding virus-host co-evolution and future disease management options of pest species to secure Australia's remaining natural biodiversity.

16.
Infect Genet Evol ; 11(1): 23-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21074637

RESUMO

Host-parasite co-evolutionary processes are the most important drivers shaping the host's immune system. During successful host immune responses to helminthic infections, usually a balanced cascade of different immune genes like MHC, T helper cell 1 and 2 (Th1 and Th2) cytokines is expressed. This information comes largely from human or laboratory studies. The situation under which the immune system has evolved, however, is more complicated and natural variation need to be included to provide a more complete picture of co-evolutionary processes. We employed quantitative real-time PCR (qPCR) to explore associations of immune gene expression, body mass index (BMI) and helminth burden in a wild population of a non-model rodent (Delomys sublineatus). Our study shows that a typical Th2 response with a combination of inflammatory and anti-inflammatory components is detectable also under natural conditions. Complex associations of the expression levels of TGF-ß, IL-10, IL-4 and IL-2 with different parasites and with the number of different helminth infections, respectively, were detected. A positive association of the body mass index with the expression of IL-2 and IL-4 may indicate a link between host condition and the inflammatory part of an immune reaction. Our study shows for the first time that despite several potentially confounding parameters naturally present in a wildlife study, typical patterns of immune gene expression are detectable and influence helminth burden. Thus, in addition to structural variance of immune-relevant genes their expression might reflect host-parasite coevolutionary processes.


Assuntos
Expressão Gênica , Interações Hospedeiro-Parasita , Roedores/parasitologia , Animais , Brasil , Citocinas/genética , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Roedores/genética , Roedores/imunologia
17.
Infect Genet Evol ; 10(5): 662-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363374

RESUMO

Several recent studies of animals in their natural surroundings found evidence for effects of certain major histocompatibility complex (MHC) immune gene alleles on the parasite load. However, in multi-infected individuals the particular selection pressure exerted by specific parasites has rarely been explored. In this study we took advantage of the parasitological and genetic data of two previously investigated Malagasy lemur species (Cheirogaleus medius and Microcebus murinus). We investigated whether the two sympatric and ecologically similar primates are infected by similar parasite species and explored if certain parasites are associated with particular MHC alleles. Our study revealed that most of the parasite egg morphotypes were found in both hosts. In each lemur species we identified one MHC allele which was positively associated with Ascaris-infection. Interestingly, these MHC alleles were very similar to each other but differed from all other investigated MHC alleles in an amino acid substitution in a putative functional important antigen binding site. Thus, our study gives first intriguing evidence for a direct connection between certain antigen binding sites of MHC molecules with a particular parasite in two wild primate populations. This may indicate that indeed certain parasites exert direct selective pressure on the MHC of wild living hosts.


Assuntos
Alelos , Lemur , Complexo Principal de Histocompatibilidade/genética , Parasitos , Sequência de Aminoácidos , Animais , Variação Genética , Lemur/genética , Lemur/imunologia , Lemur/parasitologia , Madagáscar , Dados de Sequência Molecular , Contagem de Ovos de Parasitas , Filogenia , Seleção Genética/genética , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Proc Biol Sci ; 275(1634): 555-64, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18089539

RESUMO

The mechanisms and temporal aspects of mate choice according to genetic constitution are still puzzling. Recent studies indicate that fitness is positively related to diversity in immune genes (MHC). Both sexes should therefore choose mates of high genetic quality and/or compatibility. However, studies addressing the role of MHC diversity in pre- and post-copulatory mate choice decisions in wild-living animals are few. We investigated the impact of MHC constitution and of neutral microsatellite variability on pre- and post-copulatory mate choice in both sexes in a wild population of a promiscuous primate, the grey mouse lemur (Microcebus murinus). There was no support for pre-copulatory male or female mate choice, but our data indicate post-copulatory mate choice that is associated with genetic constitution. Fathers had a higher number of MHC supertypes different from those of the mother than randomly assigned males. Fathers also had a higher amino acid distance to the females' MHC as well as a higher total number of MHC supertypes and a higher degree of microsatellite heterozygosity than randomly assigned males. Female cryptic choice may be the underlying mechanism that operates towards an optimization of the genetic constitution of offspring. This is the first study that provides support for the importance of the MHC constitution in post-copulatory mate choice in non-human primates.


Assuntos
Cheirogaleidae/fisiologia , Variação Genética , Complexo Principal de Histocompatibilidade/genética , Preferência de Acasalamento Animal/fisiologia , Animais , Sequência de Bases , Cheirogaleidae/genética , Feminino , Genótipo , Madagáscar , Masculino , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Observação , Análise de Sequência de DNA , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA