Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22827, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129563

RESUMO

Endothelial cells (EC) are key players in vascular function, homeostasis and inflammation. EC show substantial heterogeneity due to inter-individual variability (e.g. sex-differences) and intra-individual differences as they originate from different organs or vessels. This variability may lead to different responsiveness to external stimuli. Here we compared the responsiveness of female human primary EC from the aorta (HAoEC) and coronary arteries (HCAEC) to Epidermal Growth Factor Receptor (EGFR) activation. EGFR is an important signal integration hub for vascular active substances with physiological and pathophysiological relevance. Our transcriptomic analysis suggested that EGFR activation differentially affects the inflammatory profiles of HAoEC and HCAEC, particularly by inducing a HCAEC-driven leukocyte attraction but a downregulation of adhesion molecule and chemoattractant expression in HAoEC. Experimental assessments of selected inflammation markers were performed to validate these predictions and the results confirmed a dual role of EGFR in these cells: its activation initiated an anti-inflammatory response in HAoEC but a pro-inflammatory one in HCAEC. Our study highlights that, although they are both arterial EC, female HAoEC and HCAEC are distinguishable with regard to the role of EGFR and its involvement in inflammation regulation, what may be relevant for vascular maintenance but also the pathogenesis of endothelial dysfunction.


Assuntos
Vasos Coronários , Células Endoteliais , Humanos , Feminino , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Aorta , Receptores ErbB/metabolismo , Inflamação/metabolismo , Endotélio Vascular/metabolismo
2.
iScience ; 26(11): 108286, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026216

RESUMO

Vascular smooth muscle cells (VSMC) are critical for the vascular tone, but they can also drive the development of vascular diseases when they lose their contractile phenotype and de-differentiate. Previous studies showed that the epidermal growth factor receptor (EGFR) of VSMC is critical for vascular health, but most of the underlying mechanisms by which VSMC-EGFR controls vascular fate have remained unknown. We combined RNA-sequencing and bioinformatics analysis to characterize the effect of EGFR-activation on the transcriptome of human primary VSMC (from different female donors) and to identify potentially affected cellular processes. Our results indicate that the activation of human VSMC-EGFR is sufficient to trigger a phenotypical switch toward a proliferative and inflammatory phenotype. The extent of this effect is nonetheless partly donor-dependent. Our hypothesis-generating study thus provides a first insight into mechanisms that could partly explain variable susceptibilities to vascular diseases in between individuals.

3.
Biochem Pharmacol ; 217: 115837, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777161

RESUMO

The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.


Assuntos
Doenças Cardiovasculares , Receptor Tipo 1 de Angiotensina , Humanos , Angiotensina II/metabolismo , Receptores ErbB/metabolismo , Inflamação , Receptor Tipo 1 de Angiotensina/metabolismo , Tirosina
4.
Mycotoxin Res ; 39(4): 393-403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466908

RESUMO

Despite a long history of research, the mode of action of the mycotoxin ochratoxin A (OTA) is still not clear. Based on our observation that OTA-exposed cells consume more glucose and produce more lactate than control cells, with this study, we want to suggest another possible mode of action of OTA, involving cellular metabolism and mitochondria. We exposed human proximal tubule cells (HK2 cells) to OTA and studied its influence on mitochondrial performance as well as on the expression of energy homeostasis-involved routing proteins (AMPK and TXNIP) and on glucose transporting and metabolizing proteins. OTA reduced the capacity of mitochondria to increase their oxygen consumption rate forcing the cells to switch to the ineffective anaerobic glycolysis which demands higher glucose availability. The higher glucose demand is met by augmented cellular glycogen degradation and increased glucose uptake capabilities by increasing glucose transporter expression. We conclude that OTA exposure leads to impaired mitochondria, which forces the cells to alter their metabolism in order to ensure energy supply. We suggest to consider a possible effect of OTA on metabolism and mitochondria and to have a closer look on OTA-induced changes in the metabolome as possible additional players in OTA toxicity.


Assuntos
Micotoxinas , Ocratoxinas , Humanos , Ocratoxinas/toxicidade , Micotoxinas/toxicidade , Homeostase , Glucose/metabolismo
5.
Antioxidants (Basel) ; 12(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36829971

RESUMO

Crosstalk of renal epithelial cells with interstitial fibroblasts plays an important role in kidney pathophysiology. A previous study showed that crosstalk between renal epithelial cells and renal fibroblasts protects against acidosis-induced damage. In order to gain further mechanistic insight into this crosstalk, we investigated the effect of acidosis on the transcriptome of renal epithelial cells (NRK-52E) and renal fibroblasts (NRK-49F) in co-culture by RNASeq, bioinformatics analysis and experimental validation. Cells were exposed to acidic media or control media for 48 h. RNA and protein from whole cell lysate were isolated. In addition, cells were fractionated into cytosol, nucleus and chromatin. RNASeq data were analyzed for differential expression and pathway enrichment (ingenuity pathway analysis, IPA, QIAGEN). Total and phosphorylated protein expression was assessed by Western blot (WB). Transcription factor activity was assessed by luciferase reporter assay. Bioinformatic analysis using differentially expressed genes according to RNASeq (7834 for NRK-52E and 3197 for NRK-49F) predicted the antioxidant and cell-protective Nrf2 pathway as acidosis-induced in NRK-52E and NRK-49F cells. Activation of Nrf2 comprises enhanced Nrf2 phosphorylation, nuclear translocation, DNA binding and initiation of a cell protective transcriptional program. Our data show that acidosis enhances chromatin-associated Nrf2 expression and the abundance of phosphorylated Nrf2 in the chromatin fraction of NRK-52E cells in co-culture but not in monoculture. Furthermore, acidosis enhances the activity of a reporter for Nrf2 (ARE-luciferase). Despite the bioinformatics prediction, NRK-49F cells did not respond with Nrf2 activation. Transketolase (TKT) is an important regulator of antioxidant and homeostatic responses in the kidney and a canonical Nrf2 target gene. We show that protein and mRNA expression of TKT is increased in NRK-52E cells under co-culture but not under monoculture conditions. In conclusion, our data show that extracellular acidosis activates the cytoprotective transcription factor Nrf2 in renal epithelial cells co-cultivated with renal fibroblasts, thereby enhancing the expression of cytoprotective TKT. This protective response is not observed in monoculture. Activation of the Nrf2 pathway represents a co-operative cellular strategy of protection against acidosis.

6.
Cells ; 11(12)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741065

RESUMO

In vivo, cells are simultaneously exposed to multiple stimuli whose effects are difficult to distinguish. Therefore, they are often investigated in experimental cell culture conditions where stimuli are applied separately. However, it cannot be presumed that their individual effects simply add up. As a proof-of-principle to address the relevance of transcriptional signaling synergy, we investigated the interplay of the Epidermal Growth Factor Receptor (EGFR) with the Angiotensin-II (AT1R) or the Thromboxane-A2 (TP) receptors in murine primary aortic vascular smooth muscle cells. Transcriptome analysis revealed that EGFR-AT1R or EGFR-TP simultaneous activations led to different patterns of regulated genes compared to individual receptor activations (qualitative synergy). Combined EGFR-TP activation also caused a variation of amplitude regulation for a defined set of genes (quantitative synergy), including vascular injury-relevant ones (Klf15 and Spp1). Moreover, Gene Ontology enrichment suggested that EGFR and TP-induced gene expression changes altered processes critical for vascular integrity, such as cell cycle and senescence. These bioinformatics predictions regarding the functional relevance of signaling synergy were experimentally confirmed. Therefore, by showing that the activation of more than one receptor can trigger a synergistic regulation of gene expression, our results epitomize the necessity to perform comprehensive network investigations, as the study of individual receptors may not be sufficient to understand their physiological or pathological impact.


Assuntos
Receptores ErbB/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Receptor Tipo 1 de Angiotensina/metabolismo , Tromboxano A2/metabolismo , Angiotensina II/metabolismo , Animais , Receptores ErbB/genética , Regulação da Expressão Gênica , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
7.
Biomedicines ; 10(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35327483

RESUMO

Pathogenesis of chronic kidney disease (CKD) is accompanied by extracellular acidosis inflammation, fibrosis and epithelial-to-mesenchymal transition (EMT). The aim of this study was to assess the influence of acidosis on tubule epithelial cells (NRK-52E) and fibroblasts (NRK-49F) in dependence of cellular crosstalk. NRK-52E and NRK-49F were used in mono- and co-cultures, and were treated with acidic media (pH 6.0) for 48 h. The intracellular proteins were measured by Western blot. Secreted proteins were measured by ELISA. Distribution of E-cadherin was assessed by immunofluorescence and epithelial barrier function by FITC-dextran diffusion. Inflammation: Acidosis led to an increase in COX-2 in NRK-52E and TNF in NRK-49F in monoculture. In co-culture, this effect was reversed. EMT: Acidosis led to an increase in vimentin protein in both cell lines, whereas in co-culture, the effect was abolished. In NRK-52E, the E-cadherin expression was unchanged, but subcellular E-cadherin showed a disturbed distribution, and cellular barrier function was decreased. Fibrosis: Monoculture acidosis led to an increased secretion of collagen I and fibronectin in NRK-52E and collagen I in NRK-49F. In co-culture, the total collagen I secretion was unchanged, and fibronectin secretion was decreased. Intercellular crosstalk between epithelial cells and fibroblasts has a protective function regarding the development of acidosis-induced damage.

8.
Toxins (Basel) ; 13(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803529

RESUMO

The kidney is threatened by a lot of potentially toxic substances. To study the influence of the nephrotoxin ochratoxin A (OTA) we established a cell co-culture model consisting of human renal proximal tubule cells and fibroblasts. We studied the effect of OTA on cell survival, the expression of genes and/or proteins related to cell death, extracellular matrix and energy homeostasis. OTA-induced necrosis was enhanced in both cell types in the presence of the respective other cell type, whereas OTA-induced apoptosis was independent therefrom. In fibroblasts, but not in tubule cells, a co-culture effect was visible concerning the expression of the cell-cycle-related protein p21. The expression of the epithelial-to-mesenchymal transition-indicating protein vimentin was independent from the culture-condition. The expression of the OTA-induced lncRNA WISP1-AS1 was enhanced in co-culture. OTA exposure led to alterations in the expression of genes related to energy metabolism with a glucose-mobilizing effect and a reduced expression of mitochondrial proteins. Together we demonstrate that the reaction of cells can be different in the presence of cells which naturally are close-by, thus enabling a cellular cross-talk. Therefore, to evaluate the toxicity of a substance, it would be an advantage to consider the use of co-cultures instead of mono-cultures.


Assuntos
Comunicação Celular , Fibroblastos/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Ocratoxinas/toxicidade , Apoptose/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Metabolismo Energético/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Necrose , Transdução de Sinais
9.
Cells ; 9(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936152

RESUMO

Environmental food contaminants constitute a threat to human health. For instance, the globally spread mycotoxin Ochratoxin A (OTA) contributes to chronic kidney damage by affecting proximal tubule cells via unknown mechanisms. We applied a top-down approach to identify relevant toxicological mechanisms of OTA using RNA-sequencing followed by in-depth bioinformatics analysis and experimental validation. Differential expression analyses revealed that OTA led to the regulation of gene expression in kidney human cell lines, including for genes enriched in cell cycle-related pathways, and OTA-induced gap 1 and 2 (G1 and G2) cell-cycle arrests were observed. Weighted correlation network analysis highlighted cyclin dependent kinase 2 (CDK2) as a putative key regulator of this effect. CDK2 was downregulated by OTA exposure, and its overexpression partially blocked the OTA-induced G1 but not G2 cell-cycle arrest. We, therefore, propose CDK2 as one of the key regulators of the G1 cell-cycle arrest induced by low nanomolar concentrations of OTA.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/metabolismo , Poluentes Ambientais/toxicidade , Redes Reguladoras de Genes , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Ocratoxinas/toxicidade , Fenótipo
10.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118528, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415839

RESUMO

BACKGROUND: Chronic nephropathies result from different pathogenic agents, including nutritional factors triggering vicious pathophysiological cycles. Ochratoxin A (OTA) is a globally occurring nephrotoxic mycotoxin detectable in a variety of foodstuff and suspected to cause tubulointerstitial damage. The underlying mechanisms are not sufficiently understood, compromising risk assessment. Because crosstalk of proximal tubule cells with fibroblasts is crucial for tubulointerstitial damage, we investigated the effects of OTA in co-culture of these two cell types. METHODS: Rat renal proximal tubule cells (NRK-52E) and renal fibroblasts (NRK-49F) were exposed to nanomolar OTA concentrations under mono- and/or co-culture conditions for up to 48 h. We determined the impact on inflammation-, EMT- and fibrosis-associated proteins as well as microRNAs by western blot or qPCR, respectively. Alterations in cell morphology were quantitatively assessed. The roles of miRs, COX-2 and ERK1/2 in OTA-induced effects were investigated by specific inhibition. FINDINGS: Only under co-culture condition, OTA caused an increase of vimentin, fibronectin and miR-21 and a decrease of collagen III, E-cadherin, COX-2 and WISP1 mRNA abundance in NRK-52E cells. In NRK-49F cells, OTA induced an increase of N-cadherin, COX-2, WISP1 in co-culture only. The OTA-induced increase of fibronectin in NRK-52E cells was prevented by simultaneous inhibition of miR-21 and -200a, COX-2 or ERK1/2. The OTA-induced increase of COX-2 in NRK-49F cells was prevented by inhibition of miR-21 and -200a or ERK1/2. INTERPRETATION: Our results show that the complete nephropathic potential of nanomolar OTA, leading to EMT, is unveiled when cellular crosstalk is possible. In monoculture, the nephropathic potential is underestimated. RESEARCH IN CONTEXT: Chronic nephropathies are a severe health burden and the result of different pathogenic mechanisms, including nutritional factors that trigger vicious pathophysiological cycles. Ochratoxin A (OTA) is a ubiquitous, globally occurring nephrotoxic mycotoxin detectable in a variety of foodstuff and suspected to cause tubulointerstitial damage. Because underlying pathomechanisms are unclear, risk assessment is problematic. Crosstalk of proximal tubule cells (the main target of OTA) with fibroblasts is crucial for the development of tubulointerstitial damage. We show that during co-culture of proximal tubule cells and fibroblasts, OTA-induced effects (e.g. epithelial-mesenchymal transition (EMT)) change significantly as compared to monoculture. Our results show that the complete nephropathic potential of OTA is unveiled when cellular crosstalk is possible. In monoculture, the nephropathic potential of OTA is underestimated.


Assuntos
Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Ocratoxinas/toxicidade , Animais , Células Cultivadas , Técnicas de Cocultura , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ratos
11.
Toxicol Lett ; 291: 149-157, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29673704

RESUMO

Increased ochratoxin A (OTA) or citrinin (CIT) concentrations in food correlate with increased prevalence of tubule-interstitial nephropathy. We tested the hypothesis that co-exposure of human proximal tubule-derived epithelial cells (HK-2) to OTA and CIT promotes synergistic events indicative for inflammation, epithelial-to-mesenchymal-transition (EMT) or fibrosis. We measured markers of inflammation, EMT and fibrosis and investigated the role of MAP-kinases. Only concurrent but not individual exposure to OTA and CIT at nanomolar concentrations led to (i) an increase of TNF protein and mRNA, (ii) a decrease of COX-2 protein and mRNA, (iii) a decrease of E-cadherin protein and (iv) an increase of vimentin and α-SMA protein. Cell shape shifted from a cobblestone- to a spindle-like phenotype indicating EMT. Extra- and intracellular collagen III protein content was increased. Concomitant mRNA expression changes were observed for TNF, COX-2, E-cadherin and α-SMA indicating transcriptional regulation. This was not the case for vimentin and collagen III mRNA indicating posttranscriptional regulation. Inhibition of ERK 1/2 and JNK 1/2 reduced the effect on TNF but not on α-SMA mRNA indicating an involvement of these kinases. Phosphorylation of ERK1/2 was increased by CIT, OTA alone and the mycotoxin combination. In contrast, the phosphorylation of JNK1/2 was unchanged. In conclusion, nanomolar OTA and CIT act synergistically favouring nephropathic processes.


Assuntos
Citrinina/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Micotoxinas/toxicidade , Ocratoxinas/toxicidade , Caspase 3/biossíntese , Linhagem Celular , Colágeno Tipo III/biossíntese , Citocinas/biossíntese , Interações Medicamentosas , Sinergismo Farmacológico , Células Epiteliais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Humanos , Inflamação/tratamento farmacológico , Túbulos Renais Proximais/citologia , L-Lactato Desidrogenase/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
12.
Cell Mol Life Sci ; 75(12): 2241-2256, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29282485

RESUMO

Long non-coding RNAs represent a fraction of the transcriptome that is being increasingly recognized. For most of them no function has been allocated so far. Here, we describe the nature and function of a novel non-protein-coding transcript, named WISP1-AS1, discovered in human renal proximal tubule cells exposed to the carcinogenic nephrotoxin ochratoxin A. WISP1-AS1 overlaps parts of the fourth intron and fifth exon of the Wnt1-inducible signaling pathway protein 1 (WISP1) gene. The transcript is 2922 nucleotides long, transcribed in antisense direction and predominantly localized in the nucleus. WISP1-AS1 is expressed in all 20 samples of a human tissue RNA panel with the highest expression levels detected in uterus, kidney and adrenal gland. Its expression was confirmed in primary tissues of human kidneys. In addition, WISP1-AS1 is expressed at higher levels in renal cell carcinoma (RCC) cell lines compared to primary proximal tubule cells as well as in RCC lesions than in the adjacent healthy control tissue from the same patient. Using specific gapmer antisense oligonucleotides to prevent its upregulation, we show that WISP1-AS1 (1) does not influence the mRNA expression of WISP1, (2) affects transcriptional regulation by Egr-1 and E2F as revealed by RNA-sequencing, enrichment analysis and reporter assays, and (3) modulates the apoptosis-necrosis balance. In summary, WISP1-AS1 is a novel lncRNA with modulatory transcriptional function and the potential to alter the cellular phenotype in situations of stress or oncogenic transformation. However, its precise mode of action and impact on cellular functions require further investigations.


Assuntos
Carcinógenos/toxicidade , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/genética , Ocratoxinas/toxicidade , RNA Longo não Codificante/genética , Proteínas de Sinalização Intercelular CCN/genética , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/patologia , Morte Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética
13.
Arch Toxicol ; 91(3): 1461-1471, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27422291

RESUMO

The enigma why the mycotoxin ochratoxin A (OTA) impairs cell and organ function is still not solved. However, an interaction with target molecules is a prerequisite for any observed adverse effect. This interaction depends on characteristics of the target molecule as well as on the OTA molecule itself. OTA has different structural moieties which may be relevant for these interrelations including a halogen (chlorine) and an amino acid group (phenylalanine). To test their importance for the impact of OTA, detailed structure-activity studies with various OTA derivatives were performed. For this, 23 OTA derivatives were available, which were modified by either an exchange of the halogen moiety against another halogen (fluorine, iodine or bromine) or by the amino acid moiety against another one (tyrosine or alanine) or a combination of both. Additionally, the configuration of the 3R carbon atom was changed to 3S. These derivatives were tested in human renal cells for their ability to induce cell death (cytotoxicity, apoptosis, necrosis), their impact on collagen protein secretion and for their influence on gene expression. It turned out that the substitution of the amino acid moiety against tyrosine or alanine almost completely prevented the adverse effects of OTA. The exchange of the halogen moiety had minor effects and the inversion of the stereochemistry at C3 did not prevent the effects of OTA. Therefore, we conclude that the amino acid moiety of OTA is indispensable for the interaction of OTA with its target molecules.


Assuntos
Ocratoxinas/toxicidade , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Proteínas de Sinalização Intercelular CCN/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Colágeno/metabolismo , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Ocratoxinas/química , Proteínas Proto-Oncogênicas/genética
14.
Biochim Biophys Acta ; 1863(7 Pt A): 1519-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27012600

RESUMO

Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Trifosfato de Adenosina/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Endotelina-1/farmacologia , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/deficiência , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Regulação da Expressão Gênica , Genótipo , Inflamação/genética , Inflamação/metabolismo , Ligantes , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Estresse Oxidativo , Fenótipo , Fenilefrina/farmacologia , Cultura Primária de Células , Transdução de Sinais , Trombina/farmacologia , Fatores de Tempo , Vasopressinas/farmacologia
16.
Toxicology ; 324: 116-22, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25091173

RESUMO

Ochratoxin A (OTA) is an ubiquitous mycotoxin suspected to cause fibrotic kidney diseases. The involvement of mircoRNAs in these processes is unknown. Here, we investigated the role of the anti-fibrotic miR-29b in OTA-induced alterations of cellular collagen homeostasis. OTA exposure of human embryonic kidney cells (HEK293) cells led to an increase of collagen I, III and IV protein amounts without changes in collagen mRNA expression levels, indicating post-transcriptionally mediated mechanisms potentially involving microRNAs and 3'UTRs of collagen mRNAs. This was confirmed by enhanced luciferase activity of a collagen1A1-3'UTR reporter plasmid after OTA exposure. OTA also enhanced the luciferase activity of a reporter plasmid containing the seed region of miR-29b showing that OTA diminishes miR-29b action. Additionally, OTA induced an altered intracellular distribution of miR-29b leading to decreased cytoplasmic abundance of miR-29b. Abundantly added miR-29b (miR-29b clamp) completely prevented OTA-induced collagen formation. In summary, we show that OTA has the potential to initiate or support the development of fibrotic kidney diseases by involving post-transcriptional regulation mechanisms comprising miR-29b. OTA reduces the impact of miR-29b and thus enhances collagen protein expression. These findings allow a new perspective on how the exposure to nanomolar OTA concentrations can lead to fibrotic tissue alterations.


Assuntos
Colágeno Tipo I/biossíntese , Rim/efeitos dos fármacos , MicroRNAs/metabolismo , Ocratoxinas/toxicidade , Regiões 3' não Traduzidas , Sítios de Ligação , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Fibrose , Genes Reporter , Células HEK293 , Homeostase , Humanos , Rim/metabolismo , Rim/patologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Mensageiro/biossíntese , Transfecção , Regulação para Cima
17.
Cell Physiol Biochem ; 33(4): 1106-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732969

RESUMO

BACKGROUND/AIMS: Chronic renal proximal tubule dysfunction after therapy with the antineoplastic agent ifosfamide (IFO) is often attributed to the metabolite chloroacetaldehyde (CAA). Chronic IFO-nephropathy is reported to result in tubulointerstitial fibrosis and inflammation. METHODS: To elucidate possible effects of CAA on extracellular matrix homeostasis, we investigated the action of CAA on markers of extracellular matrix (ECM) homeostasis in human proximal tubule cells (RPTEC) by use of direct ELISA for extracellular collagens and gelatin zymography. RESULTS: An increase in type III collagen and a decrease in type IV collagen abundance in the media of RPTEC could be observed after exposure to CAA in clinically relevant concentrations. CAA increased intracellular type III and decreased intracellular type IV collagen. MMP-2 activity was decreased but MMP-9 activity unchanged. The enhanced CAA-induced collagen III formation could be attenuated by the intracellular Ca(2+)-chelator BAPTA-AM, the PKA-antagonist H-89 and by extracellular acidification. CAA-induced collagen III abundance was enhanced by db-cAMP and IBMX and by protein overload. CONCLUSIONS: CAA exerts profibrotic effects on RPTEC dependent on Ca(2+) and cAMP/PKA-signaling. These effects are enhanced by additional protein burden and attenuated by acidification. © 2014 S. Karger AG, Basel.


Assuntos
Acetaldeído/análogos & derivados , Matriz Extracelular/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Acetaldeído/farmacologia , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Cálcio/metabolismo , Células Cultivadas , Colágeno Tipo III/análise , Colágeno Tipo III/metabolismo , Colágeno Tipo IV/análise , Colágeno Tipo IV/metabolismo , AMP Cíclico/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ensaio de Imunoadsorção Enzimática , Homeostase/efeitos dos fármacos , Humanos , Ifosfamida/química , Ifosfamida/metabolismo , Isoquinolinas/farmacologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
18.
Chem Res Toxicol ; 26(3): 347-55, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23363530

RESUMO

The trichothecene mycotoxin T-2 toxin, which is produced by fungi of the Fusarium species, is a worldwide occurring contaminant of cereal based food and feed. The cytotoxic properties of T-2 toxin are already well described with apoptosis being a major mechanism of action in various cell lines as well as in primary cells of different origin. However, only few data on neurotoxic properties of T-2 toxin are reported so far, but in vivo studies showed different effects of T-2 toxin on behavior as well as on levels of brain amines in animals. To further investigate the cytotoxic properties of T-2 toxin on cells derived from brain tissue, normal human astrocytes in primary culture (NHA) were used in this study. Besides studies of cytotoxicity, apoptosis (caspase-3-activation, Annexin V) and necrosis (LDH-release), the cellular uptake and metabolism of T-2 toxin in NHA was analyzed and compared to the uptake in an established human cell line (HT-29). The results show that human astrocytes were highly sensitive to the cytotoxic properties of T-2 toxin, and apoptosis, induced at low concentrations, was identified for the first time as the mechanism of toxic action in NHA. Furthermore, a strong accumulation of T-2 toxin in NHA and HT-29 cells was detected, and T-2 toxin was subjected to metabolism leading to HT-2 toxin, a commonly found metabolite after T-2 toxin incubation in both cell types. This formation seems to occur within the cells since incubations of T-2 toxin with cell depleted culture medium did not lead to any degradation of the parent toxin. The results of this study emphasize the neurotoxic potential of T-2 toxin in human astrocytes at low concentrations after short incubation times.


Assuntos
Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Fusarium/metabolismo , Toxina T-2/toxicidade , Anexina A5/farmacologia , Astrócitos/citologia , Astrócitos/metabolismo , Caspase 3/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Grão Comestível/microbiologia , Ativação Enzimática/efeitos dos fármacos , Células HT29 , Humanos , Toxina T-2/análogos & derivados , Toxina T-2/metabolismo
19.
Mol Nutr Food Res ; 56(9): 1375-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22778029

RESUMO

SCOPE: The underlying molecular mechanisms of nanomolar ochratoxin A (OTA) concentrations, especially those on pathophysiological relevant gene expression in target tissue and underlying signaling mechanisms are unknown. METHODS AND RESULTS: qPCR arrays showed that 14 days exposure of human primary proximal tubule cells to 10 nM OTA influences the expression of genes that are related to inflammation, malignant transformation, and epithelial-to-mesenchymal transition. Wnt1 inducible signaling protein 1 (WISP1), an oncogenic, and profibrotic growth factor, turned out to be the gene with the strongest upregulation. Its expression, and that of TNF-α, an important inflammatory mediator, was further investigated in human renal cells and in primary human lung fibroblasts. OTA-induced upregulation of WISP1 and TNF-α occurs only in renal cells. Inhibition of ERK1/2 activation reverses the effect of OTA on WISP1 and TNF-α expression. Wnt or other signaling pathways were not involved. Upregulation of WISP1 and TNF-α occured independently of each other. CONCLUSION: Long-term exposure of human kidney cells with OTA concentrations expectable in renal tissue due to average dietary intake leads in an ERK1/2-dependent manner to pathogenetic alterations of gene expression, notably WISP1 and TNF-α. Renal long-term risk by OTA is actually not excludable and argues for low but rational safety levels.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Contaminação de Alimentos/análise , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Ocratoxinas/toxicidade , Proteínas Proto-Oncogênicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ocratoxinas/análise , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de RNA , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
20.
J Agric Food Chem ; 60(22): 5676-84, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22551244

RESUMO

The mycotoxin T-2 toxin, produced by various Fusarium species, is a widespread contaminant of grain and grain products. Knowledge about its toxicity and metabolism in the human body is crucial for any risk assessment as T-2 toxin can be detected in processed and unprocessed food samples. Cell culture studies using cells of human origin represent a potent model system to study the metabolic fate of T-2 toxin as well as the cytotoxicity in vitro. In this study the metabolism of T-2 toxin was analyzed in a cell line derived from human colon carcinoma cells (HT-29) and primary human renal proximal tubule epithelial cells (RPTEC) using high-performance liquid chromatography coupled with Fourier transformation mass spectrometry (HPLC-FTMS). Both cell types metabolized T-2 toxin to a variety of compounds. Furthermore, cell cycle analysis in RPTEC proved the apoptotic effect of T-2 toxin and its metabolites HT-2 toxin and neosolaniol in micromolar concentrations.


Assuntos
Apoptose , Grão Comestível , Contaminação de Alimentos , Fusarium/metabolismo , Toxina T-2/metabolismo , Ciclo Celular , Células Cultivadas , Células HT29 , Humanos , Túbulos Renais/citologia , Túbulos Renais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA